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1. Introduction  
Heath, Jarrow and Morton [1992] presented the general framework of interest rate models which enable the 
valuation of interest rate derivative securities by automatically reproducing the initial term stricture of interest 
rates and by specifying the volatility function of instantaneous forward rates (models belonging to this 
framework are hereinafter referred to as “HJM models”).   
While a wide range of concrete models in this framework have been studied, it has been difficult to obtain an 
analytical expression of a standard bond option’s or a swaption’s price under nonnegative conditions for interest 
rates.  Valuation is thus commonly based on numerical approximation approaches such as Monte Carlo 
simulation.   
In an HJM model, the stochastic differential equation for a (risk neutral) equivalent martingale measure (EMM) 
of the forward rate for an extremely short interest period commencing when u(≥t) at time t, denoted by 
{f(t,u)}0≤t≤u<∞, is expressed by 
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Monte Carlo simulation involves simulation based on the discretization of the short-term money market rate 
r(t) = f (t,t) and the above equation which represents the volatility of all instantaneous forward rates relating to 
derivative securities subject to valuation, but it takes substantial computing time to achieve a sufficient level of 
accuracy to withstand practical use.  This paper proposes an approach based on asymptotic expansion to 
overcome this drawback.   
The asymptotic expansion approach is an integrated approach to analytic approximations with a sufficient level 
of accuracy to withstand practical use, including cases in which the price of the underlying assets follows a 
general (multidimensional) Markov continuous stochastic process when uncertainties in the valuation of 
European derivative securities are represented by Brownian motion (Kunitomo and Takahashi [1992], 
Takahashi [1995] and [1999]), and cases in which its price follows a continuous stochastic process that is not 
necessarily Markovian in relation to interest rates (Kunitomo and Takahashi [2001]).  The asymptotic 
expansion approach may intuitively be referred to as a stochastic Taylor expansion which involves expanding 
the target stochastic process such that the coefficient of the Brownian motion is around zero, that is, around a 
nonstochastic process.  In mathematical terms, it is legitimized on the basis of Malliavin-Watanabe Calculus 
in stochastic analysis (for example, refer to Ikeda and Watanabe [1989] and Yoshida [1992]).  (For details, 
refer to Kunitomo and Takahashi [2003a]).  Its scope of application in the finance sector is wide ranging, 
including the valuation of European derivative securities mentioned above, dynamic optimal portfolio 
(Takahashi and Yoshida [2001a] and [2004], Kobayashi, Takahashi and Tokioka [2001], and Kunitomo and 
Takahashi [2003b]), and improving the efficiency of Monte Carlo simulation (Takahashi and Yoshida [2001b]).  
Further, Takahashi and Saito [2003] demonstrated its application to American derivative securities, and 
Kunitomo and Takahashi [2003b] to jump-diffusion processes.  For a full explanation of such applications of 
the asymptotic expansion approach to the finance sector in general, refer to Kunitomo and Takahashi [2003].   
This paper derives an analytic approximation formula for valuating bond options and swaptions, by converting 
the assumed stochastic differential equation using the so-called forward measure, and by performing asymptotic 
expansion on the equation.  Kunitomo and Takahashi [2001] derived an analytic approximation formula 
through asymptotic expansion under a risk neutral measure.  The approximation formula obtained under the 
forward measure is much simpler than the original approximation formula, having the advantage of making 
numerical evaluation easier.  Further, Takahashi and Yoshida [2001b] developed a variance reduction method 
for Monte Carlo simulations utilizing the asymptotic expansion approach.  We enhance this approach to show 
that the variance in Monte Carlo simulations can be reduced even further.  The enhanced approach results in 
much faster convergence in simulations, and makes it possible to reduce analytic approximation errors due to 
asymptotic expansion.  Through numerical calculation, we also reveal the validity of this approach in a 
two-factor HJM model with a realistic volatility function which satisfies nonnegativity conditions for interest 
rates.   
This paper is structured as follows.  In the next section, Section 2, we establish the problem in concrete terms.  
In Section 3, we derive an analytic approximation formula for pricing bond options based on asymptotic 
expansion.  And finally, in Section 4, we present a variance reduction method for Monte Carlo simulations 
using asymptotic expansion, and examine the method with an analytic approximation formula based on 
numeric examples. 
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2. Problem Establishment 
2.1 Bonds as Underlying Assets 
Here, we build a model for bond options, the subject of this paper.  Firstly, assume that the trading period is 
[0,T] (T<∞) at the present time 0.   
Suppose that “filtered probability space: (Ω,F,{Ft}0≤t≤T,P)” is given, and that the interest rate and the price of 
bonds are Ft-measurable stochastic processes.  However, assume that filtration meets the usual conditions.  
Next, fix the interest-bearing bonds—the underlying assets of the options subject to analysis.  Assume that the 
following is given for options. 

 Time at which European options are exercised: )0(   TTT <<  
 Price at which European options are exercised: K 

Also assume that the following is given for underlying assets. 
 Time at which cash flow is generated: TTTT m ≤<<< ...)( 1   
 Cash flow generated at each point of time Tj: ),...,1(   mjc j =  

Then, work out the price of options.   
 
2.2 HJM Model 
Here, we study the so-called instantaneous forward rate.  Suppose that the instantaneous forward rate is an 
Ft-measurable stochastic process with respect to the given filtered probability space: (Ω,F,{Ft}0≤ t≤T ,P).  
Assume that when f(t,u)(t≤u), f(t,u), satisfies the following stochastic differential equation. 
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However, let  
α(x,y,z),σi(x,y,z)   (1≤ i≤ n) denote a real-valued function with three variables, and  
W(t) = {Wi(t)}1≤ i≤n denote n-dimensional Brownian motion.   

In the so-called HJM model proposed by Heath, Jarrow and Morton [1992], the instantaneous forward rate 
process satisfies the stochastic differential equation in the form of (2.2).  The following is a brief summary of 
this model. 
Based on the concept of instantaneous forward rates, if a discount bond matures at time u(>T ), the price 
process P(t,u) at time t is 
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Therefore, if the discount bond matures at the time at which cash flow is generated for the bond (the underlying 
asset), denoted by Tj, its price at time t, denoted by P(t,Tj), is expressed by 
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In an HJM model, if the order of integration is changed by using Formula (1), the following relationship holds. 
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Further, by using Ito’s formula, ),( j
T TtP satisfies the following stochastic differential equation.   
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This, however, assumes that 
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Based on the above, ),( j
T TtP is expected to become a martingale by change in measure, provided that the 

following assumptions are made. 
 
Assumption 1: Using the symbols above, assume the following with respect to trading period ],0[ T and the 
respective maturity dates of discount bonds mTTT ,...,)( 1< . 

m×n volatility matrix: ),()}({)( , jiji Ttatt == σσ  
m×1 drift vector:  ),())(()( jj Ttbtbtb ==

At this time,  
(i) rank(σ(t)) = m (a.s), and 
(ii) Ft-measurable n×1 market risk price process vector θ(t) exists, and the following three conditions are 

satisfied. 
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This assumption can be obtained from a no-arbitrage condition.  Usually, it is deemed to hold provided that 
the number of maturity dates of the discount bonds subject to analysis, denoted by m, is greater than the degree 
of Brownian motion representing the cause of interest rate fluctuations, denoted by n.  We proceed with the 
discussion based on this assumption.   
Under this assumption, the original probability measure P and an equivalent probability measure Q exist.  
Based on probability measure Q, is an n-dimensional Brownian motion.  However,  ))(()( ** tWtW i=
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Therefore, each ),( j
T TtP is a martingale based on probability measure Q.  On the other hand, the drift function 

must satisfy the following constraint due to Assumption 1. 
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Here, the following holds at arbitrary time )( Tu > . 
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This is obvious if both sides are differentiated with respect to u.  It is evident that the constraint of the drift 
function is satisfied if the following holds with respect to arbitrary time )( Tu > .  
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Accordingly, the following results can be obtained when the instantaneous forward rate process is rewritten 
using Brownian motion based on an alternative measure.   
 
Proposition 1: Suppose that the instantaneous forward rate process {f(t,u)} ),0( TuTTt ≤≤≤≤ is given in 
the form of Stochastic Differential Equation (1).  If Assumption 1 holds, the instantaneous forward rate 
process {f(t,u)} is expressed by 
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provided that is an n-dimensional Brownian motion based on probability measure Q. ))(()( ** tWtW i=

 
As shown above, we acquired a stochastic differential equation which satisfies an instantaneous forward rate in 
an HJM model based on a no-arbitrage condition, but this stochastic differential equation does not 
unconditionally have a solution.  Therefore, the following assumption is made.   
 
Assumption 2: Assume that volatility function σ i ( f (v,u),v,u) consists of real values, is a nonnegative, 
bounded continuous function with respect to variables ),0( TuTTv ≤≤≤≤ , and is Lipschitz-continuous with 
respect to the first variable. Also assume that the initial instantaneous forward rate f(0,u) is Lipschitz- 
continuous with respect to variable u.   
 
This assumption prevents the divergence of the solution that satisfies Stochastic Differential Equation (2).  
For the existence of a unique solution, the following results by Morton [1989] are well-known.   
 
Proposition 2: Based on Assumption 2, there is a unique continuous stochastic process f(t,u) 

),0( TuTTt ≤≤≤≤ which satisfies Stochastic Differential Equation (2).   
 
In the following, we study an instantaneous forward rate process which satisfies Stochastic Differential 
Equation (2) for a volatility function which satisfies this Assumption.   
 
2.3 Option Pricing   
Let V(t) )0( Tt ≤≤ denote the price of a bond option at time t with respect to the above problem establishment.   
This option may be regarded as a financial derivative product of m units of discount bonds which matures at 
Ti(j=1,…,m).  Here, the probability measure P and an equivalent probability measure Q exist.  Each 

),( j
T TtP is a martingale based on probability measure Q according to the above.  In other words, if the price 

of a discount bond maturing at T is a numéraire, the price process for m discount bonds which mature at 
Ti(j=1,…,m) are martingales.   
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Therefore, according to the well-known fact in mathematical finance, if the price of the discount bond maturing 
at T is a numéraire, the option price process V(t) )0( Tt ≤≤ is a martingale as well based on probability measure 
Q.  Accordingly, the price of the bond option at the present time (t = 0), denoted by V(0), becomes 
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For example, the call option price can be expressed as follows according to the settings of the underlying 
assets. 
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Similarly, the put option price can be expressed by 
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However, both assume that (x)+ = max{x,0}. 
In the following, we work out Vcall(0) and Vput(0) based on the instantaneous forward rate process f(t,u) 

),0( TuTTt ≤≤≤≤ , as written on the basis of Stochastic Differential Equation (2).  In pricing, we consider 
only the situation after the change of measure as stated above. 
 
3. Analytic Approximation of Option Price by Asymptotic Expansion 
3.1 Volatility Assumption 
From here onwards, we work on pricing using asymptotic expansion.  Again, the stochastic differential 
equation which satisfies an instantaneous forward rate is expressed by 
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Although we would like to work out the analytic approximation of option prices by taking an asymptotic 
expansion approach, we do not provide a strict mathematical explanation or proof of asymptotic expansion in 
this paper (refer to Kunitomo and Takahashi (2003)).  The following is an intuitive explanation of asymptotic 
expansion.   
Firstly, focus on the fact that the volatility function takes on a small value, and substitute the function iσ̂ (x,v,u) 
in the original stochastic differential equation with function εσi(x,v,u) (0<ε≤1).  The idea is to work out the 
approximate solution based on the view that it is possible to perform approximation with a polynomial equation 
of ε that becomes a normal stochastic differential equation if ε is fixed, offers a solution to each ε that changes 
smoothly with respect to ε, and has a stochastic process as the coefficient in the vicinity of ε = 0.  In other 
words, let  
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The approximate solution to the original stochastic differential equation can be obtained by working out the 
stochastic process, which is the coefficient of each εk(k=0,1,…) in the asymptotic expansion of f (ε)(t,u).     
The following two assumptions are made in order to apply this method. 
 
Assumption 3: (i) Assume that when parameter ε is fixed, volatility σi(f (ε)(v,u),v,u) consists of real values, is a 
nonnegative, bounded continuous function with respect to variables ),0( TuTTv ≤≤≤≤ , is smooth with 
respect to the first function, and all of its derivatives are uniformly bounded with respect to parameter ε. 
(ii) Assume that the initial instantaneous forward rate f (0,u) is Lipschitz-continuous with respect to variable u. 
 
Assumption 4: Assume that the following holds with respect to an arbitrary ),0( TuTTt ≤≤≤≤ . 
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As explained previously, Morton [1989] guaranteed the existence of a solution to the stochastic differential 
equation provided that Assumption 3 is made.  Further, the following discussion based on the asymptotic 
expansion approach is mathematically legitimized on the grounds of Assumptions 3 and 4 (refer to Kunitomo 
and Takahashi [2003]).  Accordingly, we proceed with the discussion on the basis that these Assumptions 
hold. 
 
3.2 Asymptotic Expansion of Instantaneous Forward Rates 
Next, perform asymptotic expansion specifically as follows. 
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As asymptotic expansion can also be executed on the right hand side based on the aforementioned assumption, 
each coefficient can be calculated by differentiating it up to the number of degrees with respect to ε.  Put 
differently, it is equivalent to performing Taylor expansion on f (ε)(t,u) in the vicinity of ε = 0.  In other words,  
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Firstly, for f0(t,u), the following is obvious with the substitution of ε = 0.   
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Thus, f1(t,u) is expressed by 
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The asymptotic expansion of f (ε)(t,u) can be calculated up to the second degree based on the above.   
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3.3 Asymptotic Expansion of Bond Price 
Next, work out the asymptotic expansion of the bond price at timeT using the asymptotic expansion of the 
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Under Assumption 3, the order of integration and stochastic integration can be alternated (for example, refer to 
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Based on this, perform asymptotic expansion on the price of the bond (underlying asset) at timeT . 
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Now, work out each term as shown below. 
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From the above, and are expressed as follows, using the probability density function of)0()(ε
callV )0()(ε

putV )()( TX ε , 
denoted by fε (x). 
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Ultimately, the approximate value of the option price can be calculated if the probability density function  
fε (x) can be approximated. 
 
3.5 Asymptotic Expansion of Probability Density Function fε (x) 
Firstly, perform asymptotic expansion on the characteristic function of )()( TX ε , denoted by ψ(ξ). 
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This shows that )(1 TX follows a normal distribution with an expected value of 0 and variance of Σ.  Here,  
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Focusing on the fact that )(1 TX is a stochastic integral of a nonstochastic function based on Brownian motion, 
and on the form of )()()( 2,21,22 TXTXTX −= , we cite the following proposition for the conditional expected 
value (for example, lemma 6.4(i) of Kunitomo and Takahashi [2003]). 
 
Proposition 4: Let W(t) = (Wi(t)) denote n-dimensional Brownian motion, q1(t) represent , and qnRR ×1a 2(t) 
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Here, the following relationship holds with respect to arbitrary real number x and arbitrary t≤T.   
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By applying this Proposition, the conditional expected values ])(|)([ 11,2 xTXTXE = and ])(|)([ 12,2 xTXTXE =  
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Based on the calculation result shown above, the characteristic function of )()( TX ε , denoted by ψ(ξ), is 
approximated to  
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then it is possible to confirm that the characteristic function becomes )()(
1 ξψ ξ by performing integration by parts.  

By this method, we found that the probability density function of )()( TX ε , denoted by fε(x), approximates to  
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3.6 Analytic Approximation of Option Price 
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This boils down to the proposition shown on the next page. 
 
Proposition 5: The approximate solution of the price of European bond options established above is as follows. 
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provided that n[x:0Σ] denotes the following probability density function with a normal distribution, with an 
expected value of 0 and variance of Σ  
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and N(x) represents the following distribution function with a standard normal distribution 
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Also, Σ,c,y and other symbols are defined as follows. 
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4. Variance Reduction Method using Asymptotic Expansion  
The results of the calculation examples below show that there are some errors in the approximate value 
acquired through asymptotic expansion when the extent of volatility depends on the level of interest rates.  
Therefore, we enhance the method advocated by Takahashi and Yoshida [2001] as a way of acquiring the 
approximate value more accurately, and examine a variance reduction method for standard Monte Carlo 
simulations using approximation by asymptotic expansion.   
As discussed in Section 3, 
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Therefore, the right-hand-side of Proposition 5 becomes 
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Here, )(1 TX can be expressed by  
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Then the statistic can be calculated by generating )(1 TX through Monte Carlo simulation.   
On the other hand, the statistic representing the value of the option at maturity, which is 
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can also be calculated by generating the following through Monte Carlo simulation.   
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ε
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Statistics )(
)(

TV call
ε and )()( TVcall

ε are expected to have a strong correlation with each other.  Thus, if new statistic V 
is defined as  

 [ ])( E)()( )()()( TVTVTVV callcallcall
εεε +−≡  

the variance of V is expected to be much smaller than that of )()( TVcall
ε in Monte Carlo simulation.  Here, 

)]([
)(

TVE call
ε can be analytically calculated by using the right-hand side of of Proposition 5.  In actual fact, 

the error in statistic V can be expressed by 
)0()(ε

callV

 { } [ ]{ }  )(  E)(    ),0(/)0()( ),0(/)0( )()()()()( TVTVTPVTVTPVV callcallcallcallcall
εεεεε −−−=−  

The first and second curly brackets on the right-hand side represent the error in )()( TVcall
ε and )()( TV call

ε , respectively.  
Therefore, if )()( TVcall

ε and )(
)(

TV call
ε have a strong positive correlation with each other, their errors should cancel 

each other out and the error in V should become smaller.  We actually confirmed the validity of this method 
based on the fact that the standard deviation substantially decreased with the use of statistic V, as shown in the 
numeric examples below.   
 
5. Accuracy of Asymptotic Expansion in Numeric Examples 
5.1 Assumed Model 
In this Section, we examine the accuracy of analytic approximation shown in Section 3 by taking swaption as a 
specific example (swaptions are essentially bond options).  We consider only a fixed interest rate (which 
corresponds to a call option of a bond with exercise price K=1), and fix the maturity term of options to five 
years, and the underlying assets to a five-year swap, settled once per year.   
Next, the volatility function must be decided in concrete terms in order to perform actual calculations.  Here, 
we make the following assumption for the volatility function, so as to express shifts and twists which are 
claimed to account for more than 90% of all causes of interest rate fluctuations. 
 
Assumption 5: Assume that the Brownian motion representing the causes of interest rate fluctuations is two 
dimensional, and that the two corresponding volatility functions are as follows. 

( ) )( exp1),,(    ),(),,( )(
2

*
21

*
1 xhuvxxhuvx vua −−−== βσσσσ  

βασσ ,,, 21 : Nonnegative real numbers  
)(xh : A bounded, nonnegative, smooth function when x > 0  

Here, the first and second volatility functions may be deemed to represent the causes of shifts and twists, 
respectively.   
In the following, we calculate a number of volatility functions which satisfy the above assumption in concrete 
terms.  It should be noted that ε in asymptotic expansion does not lose generality even if it is fixed and 
calculated at ε =1, because adjustments can be made to σ1 and σ2.  Therefore, we perform calculations by 
fixing it at ε =1 in the following without explicitly stating so each time.   
Also, we consider an initial term structure of interest rates in the form of 

      (positive straight-line yield) uuf 004.003.0),0( +=
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5.2 Concrete Calculation Examples 
Calculation Example 1: Suppose that function h(x) in Assumption 5 is constant, and that the extent of 
volatility does NOT depend on the level of interest rates.   
In this case, the stochastic differential equation which should be satisfied by instantaneous forward rates has an 
analytic solution, and the distribution of the respective prices of discount bonds is a log-normal distribution.  
Thus, it is easy to calculate the value of options at maturity )(TV by computer.  Although this does not have to 
be calculated through asymptotic expansion, we examine the accuracy of asymptotic expansion by actually 
comparing the results of the two calculation methods.  However, the calculation assumes that 

 2     ,5.0     ,08.0     ,2.0     ,)(    1)( 21 ===== βασσconstxh  

The results (refer to Table 1 below) show that the calculation based on asymptotic expansion is extremely 
accurate in this case. 
 
Next, we consider a case in which the extent of volatility depends on the level of interest rates.  To prepare for 
this, we provide the following two functions. 
 
Definition 1: The two functions h1(x) and h2(x) are defined as  

 )10001()10000(
)10000()(     )10001()10000(

)10001()(
00

0
2

00

0
1 xhxh

xhxhxhxh
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−+−
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−=  

provided that  
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⎨
⎧

≤
>=

−

)0(           0
)0(exp)(

1

0
x
xxh x  

It is evident that the two functions are both bounded, nonnegative and smooth functions.  Consider the 
following volatility function using these functions. 
 
Calculation Example 2: Suppose that function h(x) in Assumption 5 is  

  1)(0     10000)()()( 21 ≤≤+= γγγ xhxxhxh

This may be regarded as the smoothly-adjusted version of function {min (x,10000)}γ.  Its volatility type may 
be considered to be such that the extent of the volatility is proportionate to the level of interest rates to the 
power of γ.  
As the stochastic differential equation which should be satisfied by the instantaneous forward rates cannot be 
analytically solved in this case, the standard approach is to perform Monte Carlo simulation on the basis of this 
formula.  However, much computing time is consumed in achieving an acceptable level of accuracy for 
practical use.  When the analytic approximation results obtained from the standard approach are compared 
with those acquired by asymptotic expansion (refer to Tables 2 through 5 below), it shows that analytic 
approximation is an extremely close approximation.   
However, especially in cases where the extent of volatility depends on the level of interest rates, some errors 
are observed in the approximate value obtained by asymptotic expansion.  We therefore applied the method 
introduced in Section 4 in order to calculate the approximate value with greater accuracy.  According to the 
numerical calculation results (refer to Tables 2 through 5 below), the maximum error rate based on the average 
value calculated from 1000 paths in 500 cases indicates improvements in accuracy compared to the results of 
analytic approximation.  Further, the standard deviation was lower than standard Monte Carlo simulation: it 
decreased to less than 10% except in one case (10.78% when γ = 0.25, 40%OTM), reflecting a substantial 
reduction in variance. 
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5.3 Review of Calculation Results 
Here, we review the calculation results obtained above.  Firstly, the error rate decreased as the fixed interest 
rate increased from OTM (Out of The Money) to ITM (In The Money) in both cases.  Conversely, at 
40%OTM, the error rate was maximized, while the absolute level of error was about 3 to 4 base points.  
Further, when the results with respect to each γ in Calculation Example 2 were compared with those of 
Calculation Example 1 (corresponding to γ = 0), we observed a higher error rate as γ  increased.   
There are two reasons for this: as the distribution of instantaneous forward rates based on the asymptotic 
expansion approach is a closer approximation to a normal distribution (γ = 0.0), the accuracy of distribution 
approximation deteriorates as γ deviates from 0.0; and the change in volatility with respect to interest rate 
fluctuations is aggravated as γ increases.  Consequently, the error rate in price is deemed to be high 
particularly in the case of OTM, which is affected the most by uneven distribution.  However, by applying the 
aforementioned variance reduction method in both cases, it is possible to substantially reduce the standard 
deviation of values generated by Monte Carlo simulations, and thus calculate the values with high precision in 
a shorter period of time.   
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 Notes on Calculation Method 
In Monte Carlo simulation, we generated paths by dividing one year by 365, and performed integration on the 
instantaneous forward rate by dividing one year by four when calculating the bond price.  We generated paths 
2.5 million times, and worked out the present value of options by calculating the average value of the 
corresponding options at maturity.  We calculated the coefficients in asymptotic expansion through numerical 
integration.   
For the variance reduction method, we calculated the average value by first generating paths 1000 times.  We 
performed the task of generating paths 1000 times and calculating the average value in 500 cases, and 
calculated the errors in the average value based on those 500 cases with reference to the average value based on 
paths generated 2.5 million times in Monte Carlo simulation.  We then worked out the standard deviation of 
the error rate and the maximum error rate with respect to the errors in those 500 cases. 
 

 Notes on Tables  
Comparison of convergence in the upper row: For Monte Carlo simulation, the figures represent the average 
value acquired as a result of generating paths 2.5 million times, while the error rate is measured on the basis of 
the average value of paths generated 2.5 million times in Monte Carlo simulation.   
Comparison of error rate in the lower row: We calculated the average value based on paths generated 1000 
times in Monte Carlo simulation in 500 cases, calculated the error rate on the basis of the average value based 
on paths generated 2.5 million times in Monte Carlo simulation, and showed the standard deviation and the 
maximum error rate regarding those 500 cases. 
 
 
 

Table 1:  2     ,5.0     ,004.0     ,01.0     ,)(   1)( 21 ===== βασσconstxh  

 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 0.006855 0.016660 0.024251 0.033899 0.045653 0.059431 0.092194
Asymptotic Expansion 

Error Rate 
0.006852 
-0.05% 

0.016639
0.13% 

0.024230
0.09% 

0.033881
0.05% 

0.045633
0.04% 

0.059408 
0.04% 

0.092190
0.00% 

 
 
 

Table 2:  2     ,5.0     ,008459.0     ,02115.0     ,25.0 21 ===== βασσγ  

Comparison of Conversion 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 0.006468 0.017023 0.025120 0.035248 0.047374 0.061365 0.094068
Asymptotic Expansion 

Error Rate 
0.006752 

4.38% 
0.017223

1.18% 
0.025284

0.65% 
0.035395

0.42% 
0.047525

0.32% 
0.061537 

0.28% 
0.094289

0.23% 
Comparison of Error Rate 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 
(1) Standard Deviation 
Maximum Error Rate 

— 
6.58% 

22.86% 

— 
3.81% 

13.35%

— 
2.97% 
9.91% 

— 
2.26% 
7.47% 

— 
1.64% 
5.47% 

— 
1.16% 
4.03% 

— 
0.58% 
1.94% 

Variance Reduction Method 
(2) Standard Deviation 
Maximum Error Rate 

— 
0.71% 
2.37% 

— 
0.33% 
0.91% 

— 
0.24% 
0.64% 

— 
0.17% 
0.45% 

— 
0.11% 
0.35% 

— 
0.07% 
0.27% 

— 
0.05% 
0.19% 

(2)/(1)(%) 10.78% 8.59% 8.18% 7.34% 6.45% 5.88% 7.76% 
 
 

 19



 
 

Table 3:  2     ,5.0     ,01789.0     ,04472.0     ,5.0 21 ===== βασσγ  

Comparison of Conversion 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 0.006139 0.017472 0.026097 0.036729 0.049257 0.063506 0.096261
Asymptotic Expansion 

Error Rate 
0.006557 

6.81% 
0.017789

1.82% 
0.026360

1.01% 
0.036969

0.65% 
0.049515

0.52% 
0.063806 

0.47% 
0.096648

0.40% 
Comparison of Error Rate 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 
(1) Standard Deviation 
Maximum Error Rate 

— 
7.66% 

25.32% 

— 
3.99% 

13.75%

— 
3.01% 
10.05%

— 
.23% 

7.37% 

— 
1.60% 
5.37% 

— 
1.13% 
3.99% 

— 
0.58% 
1.94% 

Variance Reduction Method 
(2) Standard Deviation 
Maximum Error Rate 

— 
0.71% 
2.91% 

— 
0.27% 
1.00% 

— 
0.19% 
0.76% 

— 
0.14% 
0.51% 

— 
0.10% 
0.39% 

— 
0.08% 
0.30% 

— 
0.05% 
0.22% 

(2)/(1)(%) 9.24% 6.68% 6.21% 6.10% 6.37% 6.82% 8.84% 
 
 
 

Table 4:  2     ,5.0     ,03783.0     ,09457.0     ,75.0 21 ===== βασσγ  

Comparison of Conversion 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 0.005830 0.017967 0.027144 0.038308 0.051282 0.065843 0.098787
Asymptotic Expansion 

Error Rate 
0.006262 

7.41% 
0.018365

2.22% 
0.027491

1.28% 
0.038641

0.87% 
0.051645

0.71% 
0.066263 

0.64% 
0.099307

0.53% 
Comparison of Error Rate 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 
(1) Standard Deviation 
Maximum Error Rate 

— 
9.21% 

30.92% 

— 
4.25% 

14.40%

— 
3.10% 
10.79%

— 
2.24% 
7.78% 

— 
1.59% 
5.41% 

— 
1.13% 
4.01% 

— 
0.60% 
2.00% 

Variance Reduction Method 
(2) Standard Deviation 
Maximum Error Rate 

— 
0.62% 
2.20% 

— 
0.23% 
0.80% 

— 
0.17% 
0.56% 

— 
0.13% 
0.45% 

— 
0.10% 
0.31% 

— 
0.06% 
0.25% 

— 
0.04% 
0.13% 

(2)/(1)(%) 6.70% 5.48% 5.45% 5.79% 6.08% 5.69% 6.60% 
 
 
 

Table 5:  2     ,5.0     ,08.0     ,02.0     ,0.1 21 ===== βασσγ  

Comparison of Conversion 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 0.005541 0.018523 0.028292 0.040028 0.053489 0.068414 0.101701
Asymptotic Expansion 

Error Rate 
0.005850 

5.57% 
0.018946

2.28% 
0.028678

1.36% 
0.040415

0.96% 
0.053925

0.82% 
0.068925 

0.75% 
0.102290

0.58% 
Comparison of Error Rate 40%OTM 20%OTM 10%OTM ATM 10%ITM 20%ITM 40%ITM
Monte Carlo Simulation 
(1) Standard Deviation 
Maximum Error Rate 

— 
11.27% 
38.59% 

— 
4.64% 

15.63%

— 
3.25% 
10.71%

— 
2.30% 
7.67% 

— 
1.62% 
5.56% 

— 
1.16% 
4.16% 

— 
0.63% 
2.23% 

Variance Reduction Method 
(2) Standard Deviation 
Maximum Error Rate 

— 
0.51% 
1.66% 

— 
0.26% 
0.70% 

— 
0.22% 
0.67% 

— 
0.16% 
0.50% 

— 
0.12% 
0.33% 

— 
0.07% 
0.23% 

— 
0.03% 
0.06% 

(2)/(1)(%) 4.55% 5.69% 6.77% 6.93% 7.14% 5.92% 4.58% 
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