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Abstract

In recent years, Japanese monetary policy has been a hot topic when discussing Japan's economy. This
Ppaper presents empirical analysis of Japanese monetary policy based on time-varying structural vector autoregres-
sions (TVSVAR). Our TVSVAR includes a monetary reaction function, an aggregate supply function, an aggregate
demand function, and effective exchange rate determination function. Our TVSVAR is a dynamic full recursive
structural VAR, which is similar to Primiceri (2005), Canova and Gambetti (2006), and many related papers. Most
previous TV SVAR studies are based on Markov Chain Monte Carlo method and the Kalman filter. We, however,
adopt a new TVSVAR estimation method, proposed by Yano (2008). The method is based on the Monte Carlo
Particle filter and a self-organizing state space model, proposed by Kitagawa (1996), Gordon et al. (1993), Kita-
gawa (1998), Yano (2007b), and Yano (2007a). Our method is applied to the estimation of a quarterly model of
the Japanese economy (a nominal short term interest rate, inflation rate, real growth rate, and nominal effective
exchange rate). We would like to emphasize that our paper is the first to analyze the Japanese economy using
TVSVAR. Our analysis indicates that the monetary policy of Japan becomes ineffective in 1990s. Whether the
long-term recession experienced by Japan in the 1990s was caused by aggregate supply factors or aggregate de-
mand factors is an oft heard question. This paper concludes that both supply and demand factors contributed to the
10-year recession.
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1 Introduction

In recent years, Japanese monetary policy has been a hot topic when discussing Japan's economy. This pa-
per presents empirical analysis of Japanese monetary policy using time-varying structural vector autoregressions
(TVSVAR). Our TVSVAR includes a monetary reaction function, an aggregate supply function, an aggregate de-
mand function, and effective exchange rate determination function. The changesin coefficientsindicate changesin
the correlations among macroeconomic variables. Thus, we are able to analyze changes in the Japanese economy.
Our approach is related to Uhlig (1997), Cogley and Sargent (2001), Ciccarelli and Rebucci (2003), Cogley and
Sargent (2005), Primiceri (2005), Sims and Zha (2006), Canova and Gambetti (2006), and many studies. Most pre-
vious studies are based on Markov Chain Monte Carlo method and the Kalman filter?. In the studies, the random
walk prior (the Minnesota/Litterman prior), proposed by Doan et al. (1984), is assumed on the time-evolutions
of coefficients. The prior is based on linear Gaussian state space modeling ®. Yano (2008), however, proposes a
new TV SVAR estimation method that is based on the Monte Carlo Particle filter and a self-organizing state space
model, proposed by Kitagawa (1996), Gordon et al. (1993), Kitagawa (1998), Yano (2007b), and Yano (2007a).
A nove feature of Yano (2008) is that it assumes the time evolutions of coefficients are given by Markov chain
processes. We call this assumption the Markov chain prior on time-varying coefficients. Our prior is based on
nonlinear non-Gaussian state space modeling. The linear Gaussian case of the Markov chain prior is equivalent to
the random walk prior. Thus, our method is more flexible rather than previous methods. Our method is applied for
the estimation of a quarterly model of the Japanese economy (anominal short-term interest rate, inflation rate, real
growth rate, and nominal effective exchange rate).

There exist previous studies on Japanese monetary policy based on Bayesian statistical approach: Kimura et al.
(2003), Fujiwara (2006), and Inoue and Okimoto (2007) . Kimura et al. (2003) estimates time-varying reduced-
form VAR models based on the Kalman filter. Fujiwara (2006) and Inoue and Okimoto (2007) analyze regime
changes in the Japanese economy in the 1990s using Markov switching VAR (MSVAR). The main advantages of
our method to the previous studies are that we need fewer restrictions on the time-evol ution of coefficients and less
prior knowledge of structural changes. Kimura et al. (2003) assume the random walk prior (the Minnesota prior)
on thetime-evolution of coefficients, which are based on linear Gaussian state space modeling. We, however, adopt
the Markov chain prior, which assumes that the time-evolutions of coefficients follow Markov chain processes.
Our assumption is less restricted rather the random walk prior. Fujiwara (2006) and Inoue and Okimoto (2007),
use prior knowledge of the number of structural changes in the Japanese economy. In our method, the structural
changes of coefficients of the economy are detected using the estimated time-varying coefficients of our model.
Thus, we do not need prior knowledge of the structural changes of coefficients and regime changes in the Japanese
economy. Moreover, an advantage of our approach to the MSVAR approach is that one can use a whole data set to
estimate TVSVAR, even if there are several structural changes.

The major findings of this paper are summarized as follows. (i) The Bank of Japan’s conduct of monetary
policy by changing interest rates worked well to control real GDP in the 1980s. However, it has not worked to
control real GDP since the 1990s. Furthermore, lower interest rates brought lower economic growth. (ii) The
interest rate has had almost no impact on the inflation rate since 1990 even though interest rate policy worked
to control inflation in the 1980s. (iii) Policy reaction of the interest rate to the inflation rate was strong in the
early 1980s. However, interest rate reaction to the inflation rate diminished dramatically after 1997. In particular,

4Canova (2007) and Dejong and Dave (2007) are introductory textbooks on the Bayesian statistical approach for macroeco-
nomic analysis. Fernandez-Villaverde and Rubio-Ramirez (2005) and Fernandez-Villaverde and Rubio-Ramirez (2007) have
shown that the Monte Carlo particle filter and maximizing likelihood can be successfully applied to estimate DSGE models.

5The random walk prior is equivalent to the first-order of the smoothness prior, proposed by Kitagawa (1983). TVSVAR
based on the Kalman filter is adopted in Jiang and Kitagawa (1993) and Yano (2004) to estimate reduced-form time-varying-
coefficient vector autoregressions.

5Miyao (2006) is a comprehensive survey of the Japanese macroeconomic and monetary policy based on structural VARS.
Kasuya and Tanemura (2000) constructs Bayesian VAR optimized by the Posterior Information Criterion and estimates the
performance of forecasting.
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introduction of the zero interest rate policy bounded by zero meant the central bank of Japan could not set interest
rates in negative territory. (iv) Whether the long-term recession experienced by Japan in the 1990s was caused by
aggregate supply factors (Hayashi and Prescott (2002), Hayashi (2003) and Miyao (2006)) or aggregate demand
factors (such papers as Kuttner and Posen (2001) and Kuttner and Posen (2002)) is an oft heard question. This
paper will show both supply and demand factors contributed to the 10-year recession. (v) From aggregate demand
estimates, we can find spiral effects in the Japanese economy, especially after 1995. Lower real GDP and a lower
inflation rate exacerbated the sluggish economy creating a downward spiral. (vi) From aggregate supply estimates,
the spiral effects are not observed in the sense that lower inflation did not cause much of a further decline in the
inflation rate.

This paper is organized as follows. In section 2, we describe time-varying structural autoregressions and the
outline of a new TVSVAR estimation method, proposed by Yano (2008). In section 3, we give empirical analyses
of Japanese monetary policy and the Japanese economy. In section 4, we give conclusions and some discussion.

2 Time-Varying Structural Vector Autoregressions

In this section, we give an outline of Yano (2008). Fixst, we describe time-varying structural vector autoregressions
and define state vectors to estimate them. Second, we explain the Monte Carlo particle filter and a self-organizing
state space model to estimate a non-linear non-Gaussian state space model.

2.1 Time-Varying Structural Vector Autoregressions

Time-varying structural vector autoregressions (TVSVAR) for the time series Yi:7 = fY1;Yo;--- 5 Ypg are de-
fined asfollows:

BotYe = BpitYi—p+ Diugy + et + €3 )

p=1

where Y; is a (k x 1) vector of observations at time t, u¢_,; is an (n x 1) vector of exogenous variables at time t,
% > 0is aconstant, c; is a (k x 1) vector of time-varying intercepts at time t, and the error vector with stochastic
volatility, &, = (eg;¢s - - ;ek;t)T ~ N(0; V) withV; = diag(o?,; 05, 502,) 7. The matrices of time varying
coefficients are;

2 3
71&;1;0;1’, 1 e 0
BO;t = . . . . 5 (2)
_hGl;O;t e _hdk—l;o;t 1
2 3

bl;l;p;t bl;k;p;t
ch=§ o : Z; @3

bipt oo bokpt

2
dl;l;t tee dl;n;t

DO R £ @
dk;l;t tee dk;n;t

Our TVSVAR is a generalization of TVSVAR, proposed by Primiceri (2005), because we add the exogenous

vector, uy_,,. We would like to stress that Eg. (1) is a general formulation of time-varying-coefficient regres-
sion/autoregression modeling. Jiang and Kitagawa (1993) pointed out that Eq. (1) can be estimated by each

"In this paper;, a bold-faced symbol means a vector or a matrix.
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component of Y; because V is a diagonal matrix. For example, Y;;;, the first component of Y in Eq. (1), canbe
written by
Yt =binneYie—1 + bugine Yeie—1 -+ + brone Ykt —1+

<o+ bt Yie—1 + bzt Yose—1 - -+ bkt Yioe—1 + Cise + €155

(5)
where cy;¢ isthe first component of c¢, and €1 isthe first component of e;. For another example, Yo;;, the second

component of Y in Eq. (1), can be written by

Yot =b2i1:05¢ Yise + bossse Yise—1 + Bososise Yoie—1 -+ - + boonse Yise—1+

<ot bt Yie—1 + boigipit Yose—1 - -+ baikopit Yioe—1 + Case + €245

)

where cg;t is the second component of ¢y, and eg;; is the second component of €. For the first example, we define
a state vector x of time varying coefficients as follows:

h it
Xt = biuuebizue - bkt - > Punpies boipsts - - bikipies €1t w
For the second example, we define another state vector x of time varying coefficients as follows:
h i
Xt = byuoebuuebyosne bk sy upes bugipts - Prlopsts Coip ®

Note that in the two examples above, we ignore the exogenous vector, u;_,.. Generalized formulations are de-
scribed in Appendix D. In time-varying-coefficient regression/autoregression modeling, the main problem is how
to estimate the state vectorx; 2. In the framework of sequential Bayesian filtering, the filtering distribution of x,
which is based on the observation vector, Y7:¢, is given by

p(x¢jY1:): 9
The smoothing distribution of x, which is based on the observation vector, Y1:7, is given by

p(xjYp:r): (10
Moreover, we assume that the time evolution of x; is given by

p(x¢jx¢—1): (11)

We refer to this assumption as the Markov chain prior on time-varying coefficients. Our prior isbased on nonlinear
non-Gaussian state space modeling. The linear Gaussian case of the Markov chain prioris equivalent to the random
walk prior, which has often been adopted in previous studies. We would like to emphasize that our Markov chain
prior overcame the restriction of the random walk prior. Our problem is how to estimate the state vector x using
Eqg. (9), (10), and (11). To solve the problem, we adopt the Monte Carlo particle filter, which is an algorithm
to estimate the state vector of a nonlinear non-Gaussian state space model. In the next subsection, we describe a
method to estimate the state vector x ¢ using the filter.

2.2 Nonlinear Non-Gaussian State Space Modeling and Self-Organizing State Space
Model

To estimate a state vector x, we adopt the Monte Carlo particle filter (MCPF), proposed by Kitagawa (1996), and
Gordon et al. (1993) and a self-organizing state space model, proposed by Kitagawa (1998). In this subsection, we
describe a nonlinear non-Gaussian state space model and a self-organizing state space model (MCPF is described
in the next subsection).

8See Kitagawa and Gersch (1996).
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A nonlinear non-Gaussian state space model for the time series Yi; t = £1;2; - - - ; Tg isdefined as follows:

Xt = f(thl + Vt);

(12)
Y = ht(Xt + Et);

where x; is an unknown n, x 1 state vector; v is n, X 1 system noise vector with a density function q(vj-) °,
and €; is n, x 1 observation noise vector with a density function r(ej-). The functionf : R™ x R% ! R™

is a possibly nonlinear function and the functionhy : R™* x R"< ! R™ is a possibly nonlinear time-varying
function. Thefirst equation of (12) is called a system equation and the second equation an observation equation. A
system equation depends on a possibly unknownng x 1 parameter vector, £, and an observation equation depends
on a possibly unknown n, x 1 parameter vector, &,. This nonlinear non-Gaussian state space model specifies the
two following conditional density functions.

p(xjxe—15&s)

. (13)
p(Yijx 3 €o):
Note that p(x:jx¢_1; &) is equivalent to Eq. (11). We define a parameter vector 8 as follows:
" #
o= & (19)
&

We denote that 6; is the j th elementof 6 and J (= ng+ n,) is the number of elements of §. This type of state space
model (12) contains a broad class of linear; nonlinear, Gaussian, or non-Gaussian time series models. In state space
modeling, estimating state vector, X, is the most important problem. For the linear Gaussian state space model, the
Kaman filter, which is proposed by Kalman (1960), is the most popular a gorithm to estimate state vector, x. For
nonlinear or non-Gaussian state space models, there are many algorithms. For example, the extended Ka man filter
(Jazwinski (1970)) isthe most popular algorithm and the other examples are the Gaussian-sum filter (Alspach and
Sorenson (1972)), the dynamic generalized model (West et a. (1985)), and the non-Gaussian filter and smoother
(Kitagawa (1987)). Inrecent years, MCPF for nonlinear non-Gaussian state space models is a popular algorithm
because it is easily applicable to various time series models ™°.

In econometric analysis, generally, we do not know the parameter vector 8. In the TVSVAR framework, the
unknown parameter vectors are €, and £;. In traditional parameter estimation, maximizing the log-likelihood
function of @ is often used. The log-likelihood of @ in MCPF is proposed by Kitagawa (1996). However, MCPF
is problematic to estimate parameter vector 6 because of the likelihood of the filter containing errors from the
Monte Carlo method. Thus, one cannot use a nonlinear optimizing algorithm like Newton's method 1. To solve
the problem, Kitagawa (1998) proposes a self-organizing state space model. In Kitagawa (1998), an augmented

state vector is defined as follows: " #

X
74 = Ot: (15)

An augmented system equation and an augmented measurement equation are defined as

7y = F(zi_15 v €6)5

(16)
Yt = Ht(Zt; Gt; 50);

where "

f 1+ >
F(thl;vt;SS): (Xt ! Vt)

0

9The system noise vector is independent of past states and current states.
1OMany applications are shown in Doucet et al. (2001).
1See Yano (2007b).
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and
Ht(Zt;Et;EO) = ht(Xt + (:'t):

This nonlinear non-Gaussian state space model is called a self-organizing state space (SOSS) model. This self-
organizing state space model specifies the two following conditional density functions:

p(zjze—1);

17)
p(Yijze):

2.3 The Monte Carlo Particle Filter

Most algorithms of sequential Bayesian filtering are based on Bayes theorem (see Arulampalam et al. (2002)),
which is
P(Ytjzt)P(thYli(t—l)) .

i s t> L (189
P(Y¢jYi:e—1)

where P(z:jY1:¢_1) is the prior probability, P(Y;jz;) is the likelihood, P(zjY;:¢) is the posterior probability, and

P(Y:jY1:t_1) is the normalizing constant. We denote an initial probability P(zg) = P(z0j; ), where the empty

set ; indicates that we have no observations. In the state estimation problem, determining an initial probability

P(z(), which is called filter initialization, is important because a proper initial probability improves a posterior

probability. In TVSVAR, an initial probability is restricted in —1 < x;;9 < 1, where x;; 1s the 1th element of x .
In MCPE the posterior density distribution at time t is approximated as

P(thYl:t) =

p(z¢jYi:) = PMl—m ® wito(z — z™)s (19
m=1"t m=1
where w is the weight of a particle z™, M is the number of particles, and § is Dirac's delta function 2. The
definition of w is described below. In the standard algorithm of MCPE, particles are resampled with sampling
probabilities proportional to the weights wi™ at every time t. It is necessary to prevent increasing the variance of
weights after few iterations of Eq. (18) 3. After resampling, the weights are reset to w® = 1=M. Therefore, Eq.
(19) is rewritten as

. 1 X
p(ZtJY15t) = — (S(Zt — Z\én) (20)
M m=1
where 2 are particles after resampling. Using Eq. (20), the predictor p(z¢jY:(;—1)) can be approximated by
Z
p(zejYi-1) = P2z ) p(ze— 11— 1) dze—1
ez
= M p(Zt]Zt,1)5(Zt,1 — Z\én_l)dzt,1
m=1
(21
=M p(z¢j2 )
m=1
1
' M 5(zy —z™):
m=1

2The Dirac deltafunction is defined as
Mx)=0; ifx 6 0
Z 1

s(x)dx = 1:

1

13See Doucet et al. (2000).
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Note that z{™ is obtained from
z® ~ plzga™ - (22)

Substituting Eq. (21) into Eq. (18), we obtain the following equation

p(zjY1:0) / p(Yijz) p(zjY1:(e—1)

1. N
/ Mp(Ytht) 5zy — z™)

me1 (23)
— 1 XI som m)-
=M m:1p(Ytht )5(zy — zM):
Comparing Eq. (19) and Eq. (23) indicates that a weight wi® is obtain by
wit [ p(Yejz™): (24)
Therefore, a weight w™ is defined as
com) — N 1
wt [ p(Yijz™) = r(p (Y5 z™)) @ sm=f1--- ;Mg (25)

where 1; is the inverse function of the function h; . In our TVSVAR estimation method, the augmented state
vector is estimated using MCPE. Thus, states and parameters are estimated simultaneously without maximizing
the log-likelihood of Eq. (16) because parameter vector @ in Eq. (16) is approximated by particles and is estimated
as the state vectorin Eq. (15) 13, The algorithm of our TVSVAR estimation method is summarized as follows 6.
Algorithm: Time-Varying Structural Vector Autoregressions Estimation
Sosslf2m M syl
f
FOR m=1,.. M
Predict: z® ~ p(z2™ 15 vi®)
Weight: w™ is obtained by Eq. (25)
ENDFOR
Sum of Weights: sw = I\H/f: W
Log-Likelihood: 11k = log(sw=M)

FOR m=1,.. M
Normalize: Wi = %
ENDFOR

Resampling: (27" W gy, ;] =resamplelf 2" W gy,
RETURNIf 25 Wi g, 11k]
g
SOSS.MA]I\I[fxa“gI\Iﬁ: it fyg;r: 1> Pl
f
0o ~ unif orm(P — ;P + r)
fzgh_ ) = ExPan_ 0P )
FOR t+=1,...,T
soss = SOSS[f?tnhgl:f: v vil

14See Kitagawa (1996).
5The justification of an SOSS model is described in Kitagawa (1998).
The details of MCPF and SOSS are described in Yano (2007b).
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f2m; Wil = (f2™; Wwhgh_, in soss)
ENDFOR .
RETURNIff27; wogh_ o Y]
g

With respect to a self-organizing state space model, however, Hiwseler and Kimsch (2001) points out a prob-
lem, namely determination of initial distributions of parameters for a self-organizing state space model. The
estimated parameters of a self-organizing state space model comprise a subset of the initial distributions of param-
eters. We must know the posterior distributions of parameters to estimate parameters adequately. However, the
posterior distributions of the parameters are generally unknown. Parameter estimation fails if we do not appropri-
ately know their initial distributions. Yano (2007b) proposes a method to seek initial distributions of parameters
for a self-organizing state space model using the simplex Nelder-Mead algorithm to solve the problem. To seek
initial distributions of parameters, we adopt the algorithm, proposed by Yano (2007b). Moreover;, we adopt the
smoothing agorithm and filter initialization method, which is proposed by Yano (2007a).

2.3.1 Functional Forms

In this paper, we use linear non-Gaussian state space models to estimate time-varying coefficients and param-
eters. A linear non-Gaussian state is given by
Xt = Xg—1t vy (26)
Y = Hex + €545
where Y;;; is an observation, vi ~ q(vij&t), € ~ Ti(eistjéiso), €t is the ith component of €, and &;, is the ith
component of &,. The details of x; and H; are described in Appendix C. In our Markov chain prior; q(v¢j&;)
and 1;(e;;4j&;;0) are possibly non-Gaussian distributions. We would like to emphasize that our prior make the
estimation of TVSVAR flexible rather than the random walk prior. In this paper, the innovation term q(v¢j&;)
is specified by t-distributions, and r; (e;;1j¢;:0) iS Specified by a normal distribution. In general, the components,
f&1;63 €065+ - 5 €L g, Of & are different (L isdefined in Appendix C). In this paper, however, to reduce computa
tional complexity, we assume as follows.

i = €ois = -+ = ELis = i @7
In this paper, the time evolutions of coefficients are given by
Xist = Xisg—1 + j&sj x t(d); (289

where & is the degree of freedom of Student's t-distribution. The innovation term of Y; is given by the normal
distribution (¢;;; ~ N(0; 02,)). A time-varying standard deviation is given by

Oist = Joist—1 + oMt (29

where 7, ~ N(0; 1).

3 Empirical Analyses

Our methods are applied for the estimation of a quarterly model of the Japanese economy. In the model, four
variables are included : a short-term interest rate (the uncollateralized overnight call rate), inflation rate, growth
rate, and nominal effective exchange rate 17. We use data from 1980:Q1 up to 2006:Q3. The transformation of
variables are (1) rate hikes, (2) growth rate of the seasonally-adjusted GDP deflator, (3) growth rate of seasonally-
adjusted real GDP, and (4) the change of the nominal effective exchange rate. Rate hikes are given by the first

""Data details are described in Appendix A.
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difference of the mean of the monthly average of the uncollateralized overnight call rate 8. Growth rates of the
GDP deflator and real output are given by
h i
x¢ = logX; —logX;_; x 100 (30)

The change of the nominal effective exchange rate is given by
h i
e, = — logE; —logE;_; x 100; (3D

where E; is the nominal effective exchange rate. Note that e; becomes smaller when the yen appreciates. In Fig.
1, the four variables are shown.
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Fgure 1: Macroeconomic data of Japan: 1980:Q1-2006:Q4

18See Miyao (2000), Miyao (2002), and Miyao (2006).
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3.1 Full Recursive TVSVAR

We estimate the first order of full recursive TVSVAR (FR-TVSVAR(1)) as a benchmark model. FR-TVSVAR(1)
is given by

iy = bypuele—1 + bugnemi—1 + busintyi—1 + bugsneei—1 + cue + €5 (32
e = by nostle + bynele—1 + byginemi—1 + basineyi—1 + baasneer—1 + e + emps (33
¥e = bginoitde + baigioieme + bainneie—1 + beigneme—1 + bygneyi—1 + bygneei—1 + caip ¥ eyies (34
et = byp0ieit + bugioieme + basioneyt + by siele—1 + buginemi—1 + busineyi—1 + bugneer—1 + cap + et
(35)

where 1 is the first difference of the short-term interest rate, 7 is the inflation rate, y; is the growth rate of real
output, and e; is the change of the nominal effective exchange rate 1°. Following Miyao (2000), Miyao (2002), and
Miyao (2006), the variables of FR-TVSVAR(1) are ordered from exogenous variables to endogenous variables.

We estimate TVSVAR based on quarterly data of the Japanese economy from 1980:Q1 to 2006:Q3. Fig. 2,
3, 4, and 5 show Eq. (32), (33), (34), and (35), respectively. In these figures, the solid line is an estimate of a
time-varying coefficient and the dashed lines are 68% confidence intervals 2. In invariant-coefficient structural
vector autoregressions (SVAR), impulse response functions (IRFs) are use to analyze the results. Inour TVSVAR,
IRFs are calculated in the same way in SVAR. However, the interpretation of IRFs of TVSVAR are different from
the interpretation of IRFs of SVAR because the coefficients of TVSVAR are time-varying. In Yano and Yoshino
(2008), we show IRFs for reference 2.

We compare TVSVAR with (invariant coefficient) Structural VAR (SVAR) using residual analysis. SVAR(P)
is given by

BoY:=B1Yi_1+ BoYy o+ -+ BpYi_p + e

We estimate SVAR(1) using quarterly data of the Japanese economy from 1980:Q1 to 2006:Q3. B of SVAR(1)
is

2
1 0 0 0
104! 1
Bo=§0090 0 0 : (36)
—0:4947 0:0100 1 0
—0:7272  —0:166 —0:7892 1
The standard error of B is
2
1 0 0 0
0:2481 1 0 0
BgY = g : (37
0:2483 0:1910 1 0
0:2548 0:1910 0:1157 1

Eq. (37) shows that most of the standard errors in B are larger than the elements of B . It indicates the estimates
of SVAR (1) are unreliable. In Table 1, we show the root mean square error of FR-TVSVAR(1) and SVAR(D). It
indicates that TVSVAR is better than SVAR.
In Fig 7 and 8, we show a quantile-quantile plot and the autocorrelation of residuals of FR-TVSVR(1), re-
spectively. In Fig 9 and 10, we show a quantile-quantile plot and the autocorrelation of residuals of SVAR(D),
®We set the number of particles, M, to 10000. Moreover, we set the degrees of freedom, & , in Eq. (28) to 10, 20, 30. In
the all cases, we get the same results. In our paper, we show results when we set & to 10. The other parameters of simulation
are the same in Yano (2007b) and Yano (2007a). All time-varying coefficients are standardized as follows:
beiyizit = Sdexp=Sdonss

where sdexp is the standard deviation of an explaining variable and sdexp is the standard deviation of an observation (this
standardization method may not be best). Eq. (32) is based on the Henderson-McKibbin-Taylor rule (see Clarida et al. (2000)).
DConfidence interval is calculated using 100 times estimation of a time-varying coefficient.
ZCanova and Gambetti (2006) proposes to use generalized impulse response functions of TVSVAR to solve this problem.

9
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Figure 2: it = by;1;16de—1 + buginem—1 + busineye—1 + buante—1 + cue + €t
respectively. These results indicate that TVSVAR is better than SVAR.

3.2 Macroeconomic Analysis

In Fig. 2, the results of Eq. (32) are shown. Equation (32) represents the monetary policy reaction of the central
bank of Japan. The call lending rate, which is controlled by the central bank of Japan, is assumed to depend on
the following four variables, namely, (i) lagged interest rate which represents the smooth adjustment of the interest
rate, (ii) inflation rate, (iii) growth rate of real GDP, and (iv) the exchange rate. Target values of the inflation rate,
log of GDP, and the exchange rate are captured in changes in the constant term . Figures 2 (1) to 2 (5) show changes
in the value of the coefficients of Equation (32). Figure 2 (1) shows that the central bank of Japan was conducting
gradual adjustment of the short-term interest rate during 1980 to 1983 when a high inflation rate during the second
oil crisis was the case. However, the central bank halted gradual interest rate adjustments during the bubble period
(1984-90), though it resumed such adjustments from 1993, when the low (or zero) interest rate policy was adopted
until recently. During the bubble period, the central bank's call rate control can be seen as abnormal compared
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Table 1: Root Mean Square Error

RMSE | Time-varying SVAR | Invariant-coefficient SVAR
& 0.04303 0.45066
€r 0.11014 0.52432
€y 0.08479 0.89801
€o 0.08479 4.15124

with other periods. Figure 2 (2) shows changes in the coefficient of the lagged rate of inflation. It was positive
and quite significant between 1980 to 1982 when high inflation hit Japan. It indicates that the central bank was
watching the rate of inflation as the major target of monetary policy. However, it turned to a negative value during
the bubble period which suggests the central bank lowered its call lending rate despite alow rate of inflation during
the asset price bubble period. Figure 2 (3) shows the monetary policy reaction to real GDP. When the Japanese
economy was faced with sluggish growth, the call lending rate was raised. Since the inflation rate was the main
target of central bank monetary policy in the early 1980s. Figure 2 (4) shows monetary policy reaction to the
lagged exchange rate. During the early 1980s, despite the yen's appreciation the call lending rate was raised in
order to fight higher inflation. Figure 2 (5) is the fluctuation of the constant term. In our paper, it suggests the level
of the call lending rate. In the early 1980s, the level of the call lending rate was high. On the other hand, it had
been lowered during the bubble period and early 1990s. The response of the interest rate by the central bank shows
no major reaction to any indicator since the late 1990s until recently.

In Fig. 3, the results of Eq. (33) are shown. Figure 3 (1) is the reaction of the inflation rate to the current
nominal interest rate. A higher rate of inflation raised the current nominal interest rate in the 1980s and early 1990s.
Figure 3 (2) is the response to the lagged interest rate of inflation. In the early 1980s, tight monetary policy led to
alower rate of inflation which is described as a negative coefficient of the lagged interest rate. Figure 3 (3) isthe
response to the lagged rate of inflation. During the asset bubble period and early 1990s negative coefficients were
the case. This suggests that despite a positive expected rate of inflation, the actual rate of inflation was declining.
Figure 3 (4) isthe response of lagged real GDP to the rate of inflation. In the mid-1980s, relatively higher growth
of the economy brought higher inflation. On the other hand, the influence of real GDP on inflation was quite small.
Figure 3 (5) is the response of the lagged exchange rate to the rate of inflation. In the early 1980s, the rate of
inflation continued to rise despite higher appreciation of the yen due to the second oil crisis. In the mid-1980s,
high appreciation of the yen brought alower rate of inflation which was one of the causes of the asset price bubble
in Japan.

Figure 4 shows the aggregate demand function. Figure 4 (3) shows the response of the lagged interest rate on
aggregate demand. In 1986, a lower interest rate pushed economic growth. However, in the 1990s, lower interest
rates resulted in continuation of the sluggish economy which is denoted by a positive sign of the lagged interest rate
on real GDP. Figure 4 (4) is the response of lagged inflation on aggregate demand. In 1983-85, the real economy
was growing. However, in the 1990s, the inflation rate turned negative despite a positive low growth rate. The most
recent period shows a strong positive sign since the inflation rate and economic growth have both turned positive.
Figure 4 (5) is the response of lagged real GDP on aggregate demand. Figure 4 (6) is the response of a lagged
exchange rate on aggregate demand. In 1986, despite the appreciation of the yen, real GDP was rising. In 1994,
rapid appreciation of the yen brought slower growth. Figure 5 shows that during the bubble period inflation had
been lowered and at the same time inflation was stable. Higher economic growth brought appreciation of the yen.

In Fig. 5, the results of Eq. (35) are shown. The coefficients of interest rates (namely iy and i;_1) show
a positive sign for the entire period since appreciation of the yen lowers the interest rate. The coefficients of the
inflation rate (namely ¢ and 7¢_1) show positive and negative signsfor the entire period. Sincetherate of inflation,
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the real interest rate is lowered. Thus, output increases and capital flows in from abroad, making yen appreciate.
The coefficients of the inflation rate (namely and ), and , show positive and negative signs for the entire period.
Since output increases, stock prices are expected to rise. Thus, capita inflowsincrease and the yen appreciates.

4 Conclusions and Discussions

In this paper we give an empirical analysis of Japanese monetary policy using time-varying structural vector
autoregressions (TV SVAR) based on the Monte Carlo particle filter and a self-organizing state space model. We
estimated the time-varying reaction function of Japanese monetary policy, and our TVSVAR also included an
aggregate supply function, an aggregate demand function, and nominal exchange rate determination function. Our
TVSVAR is a dynamic full recursive structural VAR, similar to Primiceri (2005), Canova and Gambetti (2006),
and many related papers. We would like to stress that Eq. (1) is agenera formulation of time-varying-coefficient
regression/autoregression modeling. While most previous studies are based on the Markov chain Monte Carlo
method and the Kalman filter, we adopt a new TVSVAR estimation method, proposed by Yano (2008). The
method is based on the Monte Carlo particle filter, proposed by Kitagawa (1996) and Gordon et al. (1993), and a
self-organizing state space model, proposed by Kitagawa (1998), Yano (2007b), and Yano (2007a). In this paper
we assume that the time evolution of coefficientsis given by Markov chain processes. We call this assumption the
Markov chain prior: The Markov chain prioris the generalization of the random walk prior. Thus, the main feature
of our method is fewer restrictions than previous methods. Our method is applied for the estimation of a quarterly
model of the Japanese economy (a nomina short-term interest rate, inflation rate, growth rate of real output, and
change of the nominal effective exchange rate). We detect structural changesin most coefficients of TVSVAR.

The effectiveness of monetary policy using interest rates can be seen in aggregate supply from 1990. Interest
rate policy toward aggregate demand is even worse in the sense that lower interest rate reduced output further.
This paper concludes that Japan's sluggish economy was caused not only by aggregate supply factors but also by
aggregate demand factors. The ineffectiveness of monetary policy from 1990 meant that the Japanese economy
could not recover until recently.

For our future study, wewould liketo try the higher order of TV SVAR, estimating the time-varying coefficients
of exogenous variables, and various types of TVSVAR. Moreover, we would like to try time-varying structural VAR
with sign restrictions (TVSVAR-SR). TVSVAR-SR is a dynamic version of Uhlig (2005) 2.

Appendix A Data Source
We use quarterly macroeconomic data of the Japanese economy from 1980:Q1 to 2006:Q3.

o Uncollateralized overnight call rate, averaged over three months (Bank of Japan): uncollateralized overnight
call rate, monthly average (July 1985-September 2006) and collateralized overnight call rate, monthly aver-
age (January 1980 - July 1985) are linked at July 1985.
http://www.boj.or.jp/en/theme/research/stat/market/index. htm

e Seasonally-adjusted real/nominal GDP (Cabinet Office): quarterly estimates of GDP, chained, (1994:Q1-
2006:Q3) and quarterly estimates of GDP, fixed-based, (1980:Q1-1994:Q1) are linked at 1994:QL1.
http://www.esri.cao.go.jp/eny'sna/menu.html

e Seasonally-adjusted GDP deflator (Cabinet Office): the deflator is calculated from seasonally-adjusted
real/nominal GDP.
http://www.esri.cao.go.jp/eny'sna/menu.html

o Nominal effective exchange rate (Bank of Japan):
http://www.boj.orjp/en/theme/research/stat/ market/forex/index.htm

2Braun and Shioji (2006) and Kamada and Sugo (2006) analyze the Japanese economy using sign-restricted VAR.
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Appendix B Sensitivity Analysis

For sensitivity analysis, we estimate TVSVAR (1) with a different order of variables: a nominal interest rates, real
growth rate, inflation rate, and nominal effective exchange rate. The results are shown in Fig. 11, 12, 13, and 14.
Interestingly, Fig. 3 (2) and Fig. 13 (3) are nearly identical. Both figures indicate that BOJ' s conduct of monetary
policy by changing interest rates worked well to control the inflation rate. However, it has not worked to control
the inflation rate since the 1990s. Moreover, Fig. 4 (3) and Fig. 12 (2) are nearly identical, too. It also shows
monetary policy of BOJ worked well to control real GDP in the 1980s. However, it has not worked to control real
GDP since the 1990s.
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Appendix C  Full Recursive TVSVAR (from 1980:Q1 to 1998:Q4)

We estimate TVSVAR based on quarterly data of the Japanese economy from 1980:Q1 to 1998:Q4 to avoid the
zero-interest rate policy and quantitative easing policy periods. Fig. 15, 16, 17, and 18 show Eq. (32), (33), (34),
and (35), respectively. In these figures, the solid line is an estimate of a time-varying coefficient and the dashed
lines are 68% confidence intervals 23. These figures are nearly identical to the figures in section 3. We conclude
that it is very little to avoid the zero-interest rate policy and quantitative easing policy periods.

In Fig 19 and 20, we show a quantile-quantile plot and the autocorrelation of residuals of FR-TVSVR(1),
respectively.

BConfidence interval is calculated using 100 times estimation of a time-varying coefficient.
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Figure 19: Q-Q Plot (Full Recursive TVSVAR)

We estimate the first order of SVAR (SVAR(1)) using quarterly data of the Japanese economy from 1980:Q1
t0 1998:Q4 to avoid the zero-interest rate policy and quantitative easing policy periods. B of SVAR(D) is

2 3
1 0 0 0
0:0648 1 0 0
Bo = g z : (Cp
—0:5243 0:0319 1 0
—0:6978 0:1627 —0:8602 1
The standard exror of B is
2
0 0
0:2515 0 0
g : (c2)
0:2519 0:2241 1 0
0:2604 0:2242 01259 1

Eq. (C2) shows that most of the standard errors in B are larger than the elements of B o. It indicates the estimates
of SVAR (1) are unreliable. In Table 2, we show the 100t mean square error of FR-TVSVAR(1) and SVAR(D).
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Fgure 20: Autocorrelation with 95% Confidence Intervals (Full Recursive TVSVAR)

In Fig 21 and 22, we show a quantile-quantile plot and the autocorrelation of residuals of the first order of full
recursive structural vector autoregressions, respectively.
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Table 2: Root Mean Square Error

RMSE | Time-varying SVAR | Invariant-coefficient SVAR
€ 0.01950 0.44802
€r 0.10686 0.50403
€y 0.04861 0.89696
€e 0.24998 4.15722
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Figure 21: Q-Q Plot (Full Recursive SVAR)

Appendix D Non-Gaussian State Space Model

The time-varying coefficients by;j;1;¢ and di;n;¢ are estimated by using MCPE. The non-Gaussian state space repre-
sentation is given by
Xt = FXt_l + GVt;
Vise = Hexe + e3¢5 (D3)
1=12--- 5k

where F, G, H are (L x L), (I x L), and (1 x L) matrices, respectively. x is an (I x 1) vector of coefficients,
v¢ 1s an L vanate possibly non-Gaussian noise, €;;¢ 1s a possibly non-Gaussian noise, and y;;; an observation. The
symbol Liis kp+ n+ 1 — 1. Details of these vectors and matrices are explained in the following paragraphs. In
our algorithm, matrices F, G are specified as follows.

F=1I. G=1Iwn; (D4
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FHgure 22: Autocorrelation with 95% Confidence Interval (Full Recursive SVAR)

where I 1, is an L-dimensional identity matrix.
For the convenience of the expression, we use the following notations:

Bisoit = (B:noses -+ 5o o)
Byt = (bstne bigine - hikne
bigsgies -+ s Bikizies -+ > Bitipits o+ > Biskipit)
die = (dis1es disoses - -+ 5 digmse) 3 (D)
Pie = (Yuo Yo+ 5 ¥iene)s
R = (Vi y2se—15 - 3 Vkse—15 -+ 5
Yiit—p> Y2it—ps - ;yk§t—p);

fi = (Utit—r> Ugit—pes * ++ > Unit—rc)
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Vectors x and H; are defined as follows. For the first component of y¢,1= 1,

X¢ = (B1;t;d\1;t)T; (D6)
Ht = (ﬁt;f/;;):

For the ith componentof y(t), 1 < i <k,

Xt = (Bi;o;t; Bis¢s d\i;t)T;

(D7)
H¢= (ﬁ;éﬁt;f\t):
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