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概　　要

本論文では状態の後退遷移方程式（後退方程式）を用いたモンテカルロ粒子フィルターに基づ

く平滑化アルゴリズムとフィルタリングの初期化アルゴリズムについて提案する。本論文の方式

は後退方程式が解析的に得られる場合において非線形非ガウス状態空間モデルにおける状態平滑

化とフィルター初期化を実現するものである。本論文で提案する平滑化はモンテカルロ粒子フィ

ルターとほぼ同等のアルゴリズムで実現できるため、その計算量はモンテカルロ粒子フィルター

の計算量と同等である。さらに、本論文では非線形非ガウス状態空間モデルによるフィルタリング

の初期化アルゴリズムを提案する。このアルゴリズムは本論文での平滑化アルゴリズムと後退方

程式を用いて実現される。本論文では提案手法の有効性を示すため、線形ガウス状態空間モデル、

線形非ガウス状態空間モデル、確率的ボラティリティ変動モデル、t-分布付確率的ボラティリティ

変動モデルによるシミュレーションを実施する。
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The Monte Carlo Particle Smoothing and Filter

Initialization Based on The Backward Transition of States∗
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Abstract

This paper proposes a smoothing algorithm based on the Monte Carlo Particle filter and the backward

transition equation of states (a backward equation). Our method is applicable to any nonlinear non-Gaussian

state space model if a backward equation is given analytically. The computational complexity of our smoothing

algorithm is equal to the complexity of the Monte Carlo Particle filter because it can be realized by a minor

modification of the Monte Carlo Particle filter. Moreover, we propose a filter initialization algorithm based on the

smoothing distribution which is obtained by our smoothing algorithm and a backward equation. In this paper, we

demonstrate the effectiveness of our method by applying it to a linear Gaussian state space model, a linear non-

Gaussian state space model, a stochastic volatility model, and a stochastic volatility model with at-distribution.

Key words : Time Series Analysis, Monte Carlo Particle Filter, Nonlinear non-Gaussian State Space

Model, Smoothing Algorithm, Stochastic Volatility Model.
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1 Introduction

The Monte Carlo Particle (MCP) filter was proposed by Gordon et al. (1993) and Kitagawa (1996). The filter is

an algorithm to estimate states for a nonlinear non-Gaussian state space model3. In recent years, the filter has

been applied to various problems4. In spite of the widespread practical application of the MCP filter, smoothing

algorithms are less well established. The first smoothing algorithm, proposed by Kitagawa (1996), is based on the

storing state vector. In that algorithm, the repetition of the resampling in the MCP filter decreases the number of

different realizations of the state vector. To resolve that problem, Kitagawa (1996) proposes the employment of

fixed L-lag smoothing. The paper recommends not makingL too large (say, 10 or 20, or 50 at the largest). A

persistent problem is that the fixedL-lag smoothing cannot use all observations when the number of observations

is larger than 10–50. To realize fixed-interval smoothing, researchers have developed alternative methods based on

a recursive recomputation approach (Nakamura and Tsuchiya (2007)), the two-filter formula (Kitagawa (1996)),

a new generalized two-filter formula (Briers et al. (2004)), a forward filtering – backward smoothing formula

(Doucet et al. (2000) and Godsill et al. (2004)), and maximuma posteriori sequence estimation (Godsill et al.

(2001).)

This paper proposes a simple MCP smoothing algorithm based on the backward transition equation of states

(a backward equation). Our method is applicable to any nonlinear non-Gaussian state space model if a backward

equation is given analytically. This paper shows that our algorithm is fundamentally equivalent to the MCP filter.

Therefore, the computational complexity of our smoothing algorithm is equal to the complexity of the MCP filter.

3Arulampalam et al. (2002) is a readable tutorial on the Monte Carlo particle filter.
4see Doucet et al., eds (2001).
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Moreover, our algorithm is easily implemented because it can be realized by a minor modification of the MCP fil-

ter. The main advantage of our algorithm is its simplicity. Furthermore, we propose a filter initialization algorithm

based on the smoothing distribution, which is obtained by our algorithm and a backward equation. Filter initializa-

tion is important to estimate the state vectors of nonlinear non-Gaussian state space models in Bayesian tracking

like the MCP filter. In this paper, we show the effectiveness of our method by applying it to a linear Gaussian state

space model, a linear non-Gaussian state space model, a stochastic volatility model, and a stochastic volatility

model with at-distribution.

Our algorithm is inspired by Klaas et al. (2006), which proposes a fast particle smoothing algorithm. Their

algorithm is a smoothing algorithm based on a new generalized two-filter smoother, proposed by Briers et al.

(2004). However, our algorithm is based on Eq. (11), which is described in section 2.2. We would like to

emphasize that our algorithm is simpler than the fast particle smoothing algorithm and it requires less memory

rather than the their method.

This paper is organized as follows. In section 2, we describe our smoothing algorithm and filter initialization

algorithm. In section 3, we show examples for some models. In section 4, we describe the salient conclusions of

the paper.

2 Model

2.1 Monte Carlo Particle Filter

A nonlinear non-Gaussian state space model for the time seriesyt, t = {1, 2, · · · , T} is defined as

xt = f(xt−1, vt),

yt = h(xt, ϵt),
(1)

wherext is an unknownnx × 1 state vector,vt is thenv × 1 system noise vector with a density functionq(v),

ϵt is thenϵ × 1 observation noise vector with a density functionr(ϵ). The functionf : Rnx × Rnv → Rnx

and the functionh : Rnx × Rnϵ → Rny are possibly nonlinear functions. The first equation of (1) is called a

system equation and the second equation is called a measurement equation. This nonlinear non-Gaussian state

space model specifies the following two conditional density functions.

p(xt|xt−1),

p(yt|xt).
(2)

The MCP filter is a variant of sequential Monte Carlo algorithms. In the MCP filter, a posterior density function
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is approximated as “particles” that have weights, as

p(xt|y1:t) =
1∑M

i=1 wi
t

M∑
i=1

wi
tδ(xt − xi

t), (3)

wherewi
t is the weight of a particlexi

t, M is the number of particles,y1:t is {y1, · · · ,yt}, andδ(·) is the Dirac

delta function5. Particlesxi
t are sampled from the system equation of Eq. (2). The weightwi

t is defined as

wi
t = r(ψ(yt, x

i
t))

∣∣∣ ∂ψ

∂yt

∣∣∣, (4)

whereψ is the inverse equation of the functionh 6. The right hand side (RHS) of Eq. (4) represents the likelihood

function of a nonlinear non-Gaussian state space model. In the standard algorithm of the MCP filter, the particles

xi
t are resampled with sampling probabilities proportional tow1

t , · · · , wM
t . Resampling algorithms are discussed

in Kitagawa (1996). After resampling, we havewi
t = 1/M . Consequently, Eq. (3) is rewritten as

p(xt|y1:t) =
1
M

M∑
i=1

δ(xt − x̂i
t), i = {1, · · · ,M}, (5)

wherex̂i
t are particles after resampling. The algorithm of the MCP filter is shown as Algorithm 1.

Algorithm 1: The Monte Carlo Particle Filter

[{x̂i
t, wi

t}
M

i=1, llk] = MCPfilter[{x̂i
t−1}

M

i=1
, yt]

{

FOR i=1,...M

Predict:xi
t ∼ p(xt|x̂i

t−1, v
i
t)

Weight:wi
t = r(ψ(yt, x

i
t))

∣∣∣∂ψ
∂y

∣∣∣
ENDFOR

Sum of Weights: sw =
∑M

i=1 wi
t

Log Likelihood: llk = log(sw/M)

FOR i=1,...,M

Normalize:wi
t = wi

t

sw

ENDFOR

5The Dirac delta function is defined as follow.

δ(x) = 0, if x ̸= 0,
Z ∞

∞
δ(x)dx = 1.

6See cite.
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Resampling: [{x̂i
t}

M

i=1] =resample[{xi
t, wi

t}
M

i=1]

RETURN[{x̂i
t}

M

i=1, llk]

}

MCPmain [{xi
0}

M

i=1, {yt}T
t=1]

{

Initialize: llk = 0

FOR t=1,...,T

mcp = MCPfilter[{x̂i
t−1}

M

i=1
, yt]

llk = llk + (llk in mcp)

{x̂i
t}

M

i=1 = ({x̂i
t}

M

i=1 in mcp)

ENDFOR

RETURN[{{x̂i
t}

M

i=1}
T

t=1
, llk]

}

2.2 Smoothing and Filter Initialization Based on a Backward Equation

We propose a smoothing algorithm based on a backward equation. Our algorithm is applicable to any nonlinear

non-Gaussian state space model with a backward equation. We assume that a backward equation is given by

xt−1 = g(xt, ξs, vt), (6)

whereg is the backward transition equation of the state vectorxt. Eq. (6) specifies the following conditional

density function.

p(xt−1|xt). (7)

In sequential Monte Carlo methods, the smoothing distributionp(xt+1|y1:T ) is approximated by

p(xt+1|y1:T ) =
1∑M

i=1 w̃i
t

M∑
i=1

w̃i
tδ(xt+1 − x̃i

t+1). (8)

The determination of̃wi
t is described below. After resampling like the MCP filter, the smoothing distribution

p(xt+1|y1:T ) is given by

p(xt+1|y1:T ) ≃ 1
M

M∑
i=1

δ(xt+1 − ˆ̃x
i

t+1), (9)

whereˆ̃xi
t+1 represent particles after resampling.

We derive the smoothing distributionp(xt|y1:T ) (1 ≤ t ≤ T ) from the definition of conditional probability.
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If the probability distributionP(y1:T ) > 0, then the conditional probability ofxt giveny1:T is

P(xt|y1:T ) =
P(xt, y1:T )

P(y1:T )
. (10)

We definey(−t)
1:T = {y1, · · · , yt−1,yt+1, · · · , yT }. We rewrite the conditional probability as follows.

P(xt|y1:T )

=
P(xt,yt, y

(−t)
1:T )

P(yt, y
(−t)
1:T )

=
P(xt,yt, y

(−t)
1:T )

P(xt,y
(−t)
1:T )

P(xt, y
(−t)
1:T )/P(y(−t)

1:T )

P(yt, y
(−t)
1:T )/P(y(−t)

1:T )

=
P(yt|xt, y

(−t)
1:T )P(xt|y(−t)

1:T )

P(yt|y(−t)
1:T )

=
P(yt|xt)P(xt|y(−t)

1:T )

P(yt|y(−t)
1:T )

.

(11)

In the fourth equality of Eq. (11), we assume that the likelihood,P(yt|xt), does not depend ony(−t)
1:T . The density,

p(xt|y(−t)
1:T ), is factorized as follows7.

p(xt|y(−t)
1:T ) =

∫
p(xt|xt+1)p(xt+1|y(−t)

1:T )dxt+1. (13)

7This factorization is justified as follows.

p(xt|y(−t)
1:T ) =

Z

p(xt, xt+1|y(−t)
1:T )dxt+1

=

Z

p(xt, xt+1, y
(−t)
1:T )

p(y
(−t)
1:T )

dxt+1

=

Z

p(xt, xt+1, y
(−t)
1:T )

p(xt+1, y
(−t)
1:T )

p(xt+1, y
(−t)
1:T )

p(y
(−t)
1:T )

dxt+1

=

Z

p(xt|xt+1, y
(−t)
1:T )p(xt+1|y(−t)

1:T )dxt+1

=

Z

p(xt|xt+1)p(xt+1|y(−t)
1:T )dxt+1

(12)

In the fifth equality of Eq. (12), we use the property thatxt depends only onxt+1 in Eq. (6).
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If p(xt+1|y(−t)
1:T ) is nearly equal top(xt+1|y1:T ), Eq. (13) can be rewritten

p(xt|y(−t)
1:T ) ≃

∫
p(xt|xt+1)p(xt+1|y1:T )dxt+1

≃ 1
M

M∑
i=1

∫
p(xt|xt+1)δ(xt+1 − ˆ̃x

i

t+1)dxt+1

=
1
M

M∑
i=1

p(xt|ˆ̃x
i

t+1)

≃ 1
M

M∑
i=1

δ(xt − x̃i
t),

(14)

where particlesxi
t are sampled from Eq. (7). From Eq. (11) and (14), we obtain the following equation

p(xt|y1:T ) ∝ p(yt|xt)p(xt|y(−t)
1:T )

≃ 1
M

p(yt|xt)
M∑
i=1

δ(xt − x̃i
t)

=
1
M

M∑
i=1

p(yt|x̃i
t)δ(xt − x̃i

t).

(15)

Eq. (15) indicates that the weight̃wi
t is obtained as

w̃i
t ∝ p(yt|x̃i

t). (16)

In summary, the smoothing distribution,p(xt|y1:T ), can be obtained using the MCP filter from timeT to time1

if the smoothing distribution,p(xT |y1:T ), and a backward equation is given. Note that the smoothing distribu-

tion, p(xT |y1:T ), can be obtained using the MCP filter (Algorithm 1). The algorithm of our backward equation

smoothing is shown as Algorithm 2.

Algorithm 2: Backward Equation Smoothing

[{ˆ̃x
i

t−1}
M

i=1
, llk] = Smoothing[{ˆ̃x

i

t}
M

i=1, yt−1]

{

FOR i=1,...M

Predict:xi
t−1 ∼ p(x̃t−1|ˆ̃x

i

t, v
i
t)

Weight: w̃i
t−1 = r(ψ(yt−1, x̃

i
t−1))

∣∣∣ ∂ψ
∂yt−1

∣∣∣
ENDFOR

Sum of Weights: sw =
∑M

i=1 w̃i
t−1

Log Likelihood: llk = log(sw/M)

FOR i=1,...,M
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Normalize:w̃i
t−1 = w̃i

t−1
sw

ENDFOR

Resampling: [{ˆ̃x
i

t−1}
M

i=1
] =resample[{x̃i

t−1, w̃i
t−1}

M

i=1
]

RETURN[{ˆ̃x
i

t−1}
M

i=1
, llk]

}

SmoothingMain [{ˆ̃x
i

T }
M

i=1, {yt}T
t=1]

{

Initialize: llk = 0

FOR t=T,...,2

smo = Smoothing[{ˆ̃x
i

t}
M

i=1, yt−1]

llk = llk + (llk in smo)

{ˆ̃x
i

t−1}
M

i=1
= ({ˆ̃x

i

t−1}
M

i=1
in smo)

ENDFOR

RETURN[{{ˆ̃x
i

t}
M

i=1}
T

t=1
, llk]

}

The computational complexity for our backward equation smoothing algorithm isO(MT ). It is equivalent to

the computational complexity for the MCP filter and Godsill et al. (2004)8. Furthermore, our smoothing algorithm

requiresO(M) storage to save particle weights because it requires onlywi
T , {1, · · · ,M}. By contrast, Godsill et

al. (2004) requiresO(MT ) storage to save weights of particle because it requireswi
t, {1, · · · ,M}, {1, · · · , T}.

In other words, the advantages of our smoothing algorithm are its simplicity and small memory requirement.

However, there remains an obstacle. In general, the backward transition equation of states cannot be obtained

analytically.

We propose a filter initialization algorithm, which chooses an appropriate initial distribution (a prior distri-

bution) p̂(x0) of the MCP filter. In general, the initial distribution̂p(x0) of the MCP filter is unknown. State

estimation based on the MCP filter and smoothing is improved if one can choose an appropriate initial probabil-

ity. We propose a filter initialization algorithm based on the smoothing distributionp(x1|y1:T ) and a backward

8Computational complexities of the two-filter formula (Kitagawa (1996)) and the maximuma posteriori sequence estima-
tion (Godsill et al. (2001)) areO(M2T ).
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equation. We can obtain an appropriate initial probabilityp̂(x0) as follows.

p̂(x0) ≃
∫

p(x0|x1)p(x1|y1:T )dx1

≃ 1
M

M∑
i=1

p(x0|ˆ̃x
i

1)

≃ 1
M

M∑
i=1

δ(x0 − x̃i
0).

(17)

Furthermore, we propose the following steps to estimate the smoothing distributionp(xt|y1:T ), {t = 1, 2, · · · , T}

using Algorithm 2 and Eq. (17) as follows.

1. Choosing an arbitrary initial distributionp(x0).

2. Using Algorithms 1 and 2 withp(x0).

3. Calculating the initial distribution̂p(x0) based on Eq. (17).

4. Using Algorithms 1 and 2 witĥp(x0).

3 Examples

We apply our algorithms to a linear Gaussian state space model, a linear non-Gaussian state space model, the

stochastic volatility model, and a stochastic volatility model with at-distribution. In the following subsections:

(1) we generate an artificial time series (T = 100) based on each model (x0 ∼ N(0, 12)), (2) we estimate a state

xt using our backward smoothing algorithm9, and (3) we calculatêp(x0). We set the number of particles,M , to

10000 to estimate the state.

3.1 Linear Gaussian State Space Model

A linear Gaussian state space model is defined as

xt = xt−1 + vt,

yt = xt + ϵt,
(18)

wherevt ∼ N(0, σ2
s) andϵt ∼ N(0, σ2

m). We set{σs, σm} = {1, 3}. The backward equation of Eq. (18) is given

by

xt−1 = xt − vt. (19)

In Fig. 1, the thick black line represents the estimated statext based on the backward equation smoothing, the

dotted line represents the estimated statext based on the MCP filter, and the thin black line represents the real
9Initial particles are sampled fromUniform(10, 11).
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state. Figure 1 shows that state estimation based on our backward smoothing algorithm is improved at time points

close to the start of the series. The initial distributionp̂(x0) and the true initial distributionp(x0) are shown in Fig.
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15

Index

S
ta

te

Figure 1: Linear Gaussian Model

2. It shows that̂p(x0) approximatesp(x0) well.

We compare backward smoothing with Kalman smoothing. In Figure 3, the thick black line represents the

estimated statext based on the backward equation smoothing. The dotted line represents the estimated statext

based on the Kalman filter; the thin black line represents the real state. Figure 3 shows that our algorithm realizes

good state estimation as well as Kalman smoothing.

3.2 Linear Non-Gaussian State Space Model

In this subsection, we apply our algorithms to a simplest linear non-Gaussian state space model with at-distribution.

A simple linear non-Gaussian state space model witht-distribution is defined as

xt = xt−1 + vt,

yt = xt + ϵt,
(20)
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Figure 2: Initial Distribution (Linear Gaussian Model)

wherevt ∼ t(df)10 andϵt ∼ N(0, σ2
m). We set{df, σm} = {8, 2}. The backward equation of Eq. (20) is given

by

xt−1 = xt − vt. (21)

The estimated statext is shown in Fig. 4. It shows that state estimation based on our backward smoothing is

improved at time points close to the start of the series. The initial distributionp̂(x0) and the true initial distribution

p(x0) are shown in Fig. 5. It shows thatp̂(x0) approximatesp(x0) well.

3.3 Stochastic Volatility Model

The stochastic volatility model, which is introduced by Taylor (1986), is adopted to model the autoregressive

behavior of the volatility and non-Normality in the returns in financial time series. The simplest stochastic volatility

model is defined as

xt = αsxt−1 + vt,

yt = ϵt exp(
xt

2
),

(22)

10The acronymdf represents degrees of freedom of thet-distribution.
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Figure 3: Compare Backward Smoothing with Kalman smoothing

wherevt ∼ N(0, σ2
s), andϵt ∼ N(0, σ2

m). We set{αs, σs, σm} = {0.8, 1, 1}. The backward equation of Eq. (22)

is given by

xt−1 =
1
αs

(xt − vt). (23)

The estimated statext is shown in Fig. 6. It shows that state estimation based on our backward smoothing is

improved at time points close to the start of the series. The initial distributionp̂(x0) and the true initial distribution

p(x0) are shown in Fig. 7. It shows thatp̂(x0) approximatesp(x0) well.

3.4 Stochastic Volatility Model with t-distribution

A stochastic volatility model with at-distribution, which is introduced by Liesenfeld and Jung (2000), is defined

as

xt = αsxt−1 + vt,

yt = ϵt exp(
xt

2
),

(24)
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Figure 4: Linear Non-Gaussian Model

wherevt ∼ N(0, σ2
s) andϵt ∼ t(df). We set{αs, σs, df} = {0.8, 1, 4}. The backward equation of Eq. (24) is

given by

xt−1 =
1
αs

(xt − vt). (25)

The estimated statext is shown in Fig. 8. It shows that state estimation based on our backward smoothing is

improved at time points close to the start of the series. The initial distributionp̂(x0) and the true initial distribution

p(x0) are shown in Fig. 9. It shows thatp̂(x0) approximatesp(x0) well.

4 Conclusions

We proposed a smoothing algorithm based on the Monte Carlo Particle filter and a backward equation. Our method

is applicable to any nonlinear non-Gaussian state space model if a backward equation is obtained analytically. The

advantage of our backward smoothing is its simplicity. It is a minor modification of the “standard” MCP filter.

Moreover, our algorithm requires little memory to store the weights of particles. Nevertheless, an obstacle to its

implementation remains: in general, the backward transition equation of states cannot be obtained analytically.

Moreover, we propose a filter initialization algorithm based on the smoothing distributionp(x1|y1:T ) and a back-
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Figure 5: Initial Distribution (Linear Non-Gaussian Model)

ward equation. Our filter initialization algorithm is very simple to implement and realizes good approximation

of a real initial distribution. We demonstrate the effectiveness of our method by applying it to a linear Gaussian

state space model, a linear non-Gaussian state space model, a stochastic volatility model, and a stochastic volatility

model with at-distribution.
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Figure 8: Stochastic Volatility Model witht-distribution
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