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The Monte Carlo Particle Smoothing and Filter
Initialization Based on The Backward Transition of States*

Koiti Yanof

Abstract

This paper proposes a smoothing algorithm based on the Monte Carlo Particle filter and the backward
transition equation of states (a backward equation). Our method is applicable to any nonlinear non-Gaussian
state space model if a backward equation is given analytically. The computational complexity of our smoothing
algorithm is equal to the complexity of the Monte Carlo Particle filter because it can be realized by a minor
modification of the Monte Carlo Particle filter. Moreover, we propose a filter initialization algorithm based on the
smoothing distribution which is obtained by our smoothing algorithm and a backward equation. In this paper, we
demonstrate the effectiveness of our method by applying it to a linear Gaussian state space model, a linear non-

Gaussian state space model, a stochastic volatility model, and a stochastic volatility model-digkriaution.

Key words :  Time Series Analysis, Monte Carlo Particle Filter, Nonlinear non-Gaussian State Space
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1 Introduction

The Monte Carlo Particle (MCP) filter was proposed by Gordon et al. (1993) and Kitagawa (1996). The filter is
an algorithm to estimate states for a nonlinear non-Gaussian state space’midegcent years, the filter has
been applied to various problerfisin spite of the widespread practical application of the MCP filter, smoothing
algorithms are less well established. The first smoothing algorithm, proposed by Kitagawa (1996), is based on the
storing state vector. In that algorithm, the repetition of the resampling in the MCP filter decreases the number of
different realizations of the state vector. To resolve that problem, Kitagawa (1996) proposes the employment of
fixed L-lag smoothing. The paper recommends not makingo large (say, 10 or 20, or 50 at the largest). A
persistent problem is that the fixdédlag smoothing cannot use all observations when the number of observations
is larger than 10-50. To realize fixed-interval smoothing, researchers have developed alternative methods based on
a recursive recomputation approach (Nakamura and Tsuchiya (2007)), the two-filter formula (Kitagawa (1996)),
a new generalized two-filter formula (Briers et al. (2004)), a forward filtering — backward smoothing formula
(Doucet et al. (2000) and Godsill et al. (2004)), and maximupvsteriori sequence estimation (Godsill et al.
(2001).)

This paper proposes a simple MCP smoothing algorithm based on the backward transition equation of states
(a backward equation). Our method is applicable to any nonlinear non-Gaussian state space model if a backward
equation is given analytically. This paper shows that our algorithm is fundamentally equivalent to the MCP filter.

Therefore, the computational complexity of our smoothing algorithm is equal to the complexity of the MCP filter.

SArulampalam et al. (2002) is a readable tutorial on the Monte Carlo particle filter.
“see Doucet et al., eds (2001).



Moreover, our algorithm is easily implemented because it can be realized by a minor modification of the MCP fil-
ter. The main advantage of our algorithm is its simplicity. Furthermore, we propose a filter initialization algorithm
based on the smoothing distribution, which is obtained by our algorithm and a backward equation. Filter initializa-
tion is important to estimate the state vectors of nonlinear non-Gaussian state space models in Bayesian tracking
like the MCP filter. In this paper, we show the effectiveness of our method by applying it to a linear Gaussian state
space model, a linear non-Gaussian state space model, a stochastic volatility model, and a stochastic volatility
model with at-distribution.

Our algorithm is inspired by Klaas et al. (2006), which proposes a fast particle smoothing algorithm. Their
algorithm is a smoothing algorithm based on a new generalized two-filter smoother, proposed by Briers et al.
(2004). However, our algorithm is based on Eq. (11), which is described in section 2.2. We would like to
emphasize that our algorithm is simpler than the fast particle smoothing algorithm and it requires less memory
rather than the their method.

This paper is organized as follows. In section 2, we describe our smoothing algorithm and filter initialization
algorithm. In section 3, we show examples for some models. In section 4, we describe the salient conclusions of

the paper.

2 Model

2.1 Monte Carlo Particle Filter

A nonlinear non-Gaussian state space model for the time ggries= {1,2,--- ,T'} is defined as

x; = f(Ti-1,v8),
1)
Y = h(mt7et)7

wherez; is an unknowm,, x 1 state vectorp;, is then, x 1 system noise vector with a density functigfv),
€ is then. x 1 observation noise vector with a density functiofg). The functionf : R"** x R™ — R"=
and the functiom, : R"» x R — R™v are possibly nonlinear functions. The first equation of (1) is called a

system equation and the second equation is called a measurement equation. This nonlinear non-Gaussian state

space model specifies the following two conditional density functions.

p(xe|Ti—1), @)
p(yt|z:).

The MCP filter is a variant of sequential Monte Carlo algorithms. In the MCP filter, a posterior density function



is approximated as “particles” that have weights, as

p(@e|y1:e) wasfs 3)
Z t =1
wherew! is the weight of a particlect, M is the number of particlesy;.; is {y1,--- ,y:}, andd(-) is the Dirac

delta functiorr. Particlesz! are sampled from the system equation of Eq. (2). The weighs defined as

, )
wf = rlw(y, @) o

oy, I’ @)

wherey) is the inverse equation of the functiér?. The right hand side (RHS) of Eq. (4) represents the likelihood
function of a nonlinear non-Gaussian state space model. In the standard algorithm of the MCP filter, the particles
x! are resampled with sampling probabilities proportionabfo- - - ,w. Resampling algorithms are discussed

in Kitagawa (1996). After resampling, we hané¢ = 1/M. Consequently, Eq. (3) is rewritten as

p(we|y1) = Z5$t—$t i={1,---, M}, )

wherez! are particles after resampling. The algorithm of the MCP filter is shown as Algorithm 1.

Algorithm 1: The Monte Carlo Particle Filter
i M _ . ~i M
({2}, wi},—;, K] = MCPfilter[{£;_,},_,, y:]
{
FORi=1,..M

Predict:z} ~ p(x¢|&i_,,v})

Weight: wj = r(¢(yy, @) | 5%
ENDFOR

Sum of Weights: sw 3 wi
Log Likelihood: Ik = log(sw/M)

FORi=1,...M

i
Wy
sw

Normalize:w! =
ENDFOR

5The Dirac delta function is defined as follow.

0(x) =0, if z #0,
o(x)dx = 1.

oo

5See cite.



Resampling: {&i}1" ] =resample{zi, wi} ]
RETURN[ i}, lIk]
}
. VM T
MCPmain [}, — 1, {ye},—4]
{
Initialize: Ik = 0
FOR t=1,...,T
mcp = MCPfilterf & _, iﬂil, yi
Uk = Uk + (lik in mcp)
{wt}1 1= ({wt}z 1 in me)
ENDFOR
M T
RETURN[{{&;};_,},_,, k]

}

2.2 Smoothing and Filter Initialization Based on a Backward Equation

We propose a smoothing algorithm based on a backward equation. Our algorithm is applicable to any nonlinear

non-Gaussian state space model with a backward equation. We assume that a backward equation is given by
xi—1 = g(xt,&s,v1), (6)

whereg is the backward transition equation of the state veator Eq. (6) specifies the following conditional

density function.
P(Ti—1|T). (7)

In sequential Monte Carlo methods, the smoothing distribytian . |y1.7) is approximated by

p(@ea|yrr) = Z Zwt (o1 — Epp)- (8)
t i=1

The determination ofi! is described below. After resampling like the MCP filter, the smoothing distribution
p(xy1|y1.7) IS given by
p(®es1|yrr) Z 6(e1 — mt+1) 9)

Whereii 41 represent particles after resampling.
We derive the smoothing distributigiiz:|y1.7) (1 < ¢t < T') from the definition of conditional probability.



If the probability distributioriP(y;.7) > 0, then the conditional probability of; giveny;.r is

P(mtv yl:T)

P(yir) (10)

P(x¢|y1.7) =
We defineyth) ={y1, " ,Y—1,Yt+1, - ,yr . We rewrite the conditional probability as follows.

P(mt |y1:T)

]P’(:ct, Y, yngt))
Py, y' )
Pl ynyi)) Pl yl)) /Pyl )
Pzny ) Plynyi) /Pyl (11)

_ Py, Y Pyl )

P(yilyi )
_ P(yi|z)P(yi)

P(y:|y' )

In the fourth equality of Eq. (11), we assume that the likelihd@y: |x:), does not depend cmi’Tt) The density,

p(x|y' ), is factorized as follows.

pladyis)) = /p(mt|$t+1)p(wt+1|y§:_Tt))dfct+1- (13)

"This factorization is justified as follows.

/ p(mt, Tt4+1 \yth) )dmt+1

/p(mtythrl:yi?))
—t
pyis)

(=) (=)

:/p(wt’wt+17y1:T ) P(@et1, Y1)

pxen,ys)  pyls)

plaly )

dxiiq

(12)

dxiiq

— [ e gl pl@ealy e
= /p(acz|mt+1)p(mt+1|y§f}))dwt+1

In the fifth equality of Eq. (12), we use the property thatdepends only or; 1 in Eq. (6).



If p(mt+1|y§th)) is nearly equal t@(x:11|y1.7), EQ. (13) can be rewritten
pladyls) = [ pladenp(eralyindee,
1 & :
i Z/p(mtlmt+1)5(wt+1 — Zpy1)d@eg
=1

M , (14)
1 i
= Zp(wtlthrl)
i=1

=

§(w, — &}),

1
=[-
M-

«
Il
-

where particles:i are sampled from Eq. (7). From Eq. (11) and (14), we obtain the following equation

p(aelyrr) o< plysla:)p <a:f|y1 D)

\ Z

1
p(ys|xe) 25 T — wt (15)

=l

M
= Z (yelZ1)0 (e — &).

Eqg. (15) indicates that the weigfif is obtained as
Wy o< p(y:|E). (16)

In summary, the smoothing distributiop(z:|y;.7), can be obtained using the MCP filter from tiffigto time 1
if the smoothing distributionp(xr|y:.7), and a backward equation is given. Note that the smoothing distribu-
tion, p(xr|y1.7), can be obtained using the MCP filter (Algorithm 1). The algorithm of our backward equation

smoothing is shown as Algorithm 2.
Algorithm 2: Backward Equation Smoothing

i M ) LM
[{"Bt—l}i:p ”k] = SmOOthmgHmt}i:p yt—l]
{

FORi=1,..M

Predict:zi_, ~ p(Z._1|%,, v!)

Weight: @, = r(u/(y 1, %}_1))| 52
ENDFOR
Sum of Weights: sw -EZ LWy
Log Likelihood: ik = log(sw/M)
FORi=1,..,.M




~

Normalize:w;_; = —=
ENDFOR

~i M ) )
Resampling: {x,_, },_,] =resample{z;_,, u?;,l}i]‘fl]
i MO B
RETURN[{#, ;},_,, lIK]
}
. . ~i M T
SmoothingMain{z},_;, {y:},_,]
{
Initialize: Ik =0
FORt=T,...,2
oai M
smo = Smoothindfz, },_;, y¢—1]
llk = Uk + (llk in smo)
21 M 2t M
{xt—l}izl = ({mt—l}izl mn SmO)
ENDFOR
oM T
RETURN[{Z, },_, },_,, llK]

}

The computational complexity for our backward equation smoothing algoritliniigT). It is equivalent to
the computational complexity for the MCP filter and Godsill et al. (260Burthermore, our smoothing algorithm
requiresO (M) storage to save particle weights because it requireswofly{1, - - - , M }. By contrast, Godsill et
al. (2004) require®)(MT) storage to save weights of particle because it requifes{1,--- , M}, {1,--- ,T}.
In other words, the advantages of our smoothing algorithm are its simplicity and small memory requirement.
However, there remains an obstacle. In general, the backward transition equation of states cannot be obtained
analytically.

We propose a filter initialization algorithm, which chooses an appropriate initial distribution (a prior distri-
bution) p(x,) of the MCP filter. In general, the initial distributigf(x() of the MCP filter is unknown. State
estimation based on the MCP filter and smoothing is improved if one can choose an appropriate initial probabil-

ity. We propose a filter initialization algorithm based on the smoothing distribyti@n|y;.7) and a backward

8Computational complexities of the two-filter formula (Kitagawa (1996)) and the maximposterior: sequence estima-
tion (Godsill et al. (2001)) ar®(M>T).



equation. We can obtain an appropriate initial probabjlity,) as follows.

(o) ~ [ plxo|er)p(x:1|yr.r)dx:

=

Vi )
= , P(330|32311) a7

_ S—

<
i

(5(150 — fiﬁé)

I
S
M-

s
Il
_

Furthermore, we propose the following steps to estimate the smoothing distrip(tigg,.7), {t =1,2,--- ,T}

using Algorithm 2 and Eg. (17) as follows.
1. Choosing an arbitrary initial distributigi(x).
2. Using Algorithms 1 and 2 witp(x).
3. Calculating the initial distributiop(zo) based on Eq. (17).

4. Using Algorithms 1 and 2 witf(x).

3 Examples

We apply our algorithms to a linear Gaussian state space model, a linear non-Gaussian state space model, the
stochastic volatility model, and a stochastic volatility model witkrdistribution. In the following subsections:

(1) we generate an artificial time seriés £ 100) based on each modet{ ~ N (0, 12)), (2) we estimate a state

x; using our backward smoothing algorithnand (3) we calculatg(zo). We set the number of particled/, to

10000 to estimate the state.

3.1 Linear Gaussian State Space Model
A linear Gaussian state space model is defined as
Tt = Te—1 + U,
(18)
Yt = Tt + €,y
wherev;, ~ N(0,02) ande; ~ N(0,02,). We set{o,0,,,} = {1,3}. The backward equation of Eq. (18) is given
by

Tt—1 = T — V¢ (19)

In Fig. 1, the thick black line represents the estimated stateased on the backward equation smoothing, the

dotted line represents the estimated statdased on the MCP filter, and the thin black line represents the real

®Initial particles are sampled frofins form(10, 11).



state. Figure 1 shows that state estimation based on our backward smoothing algorithm is improved at time points

close to the start of the series. The initial distributigr,) and the true initial distributiop(x,) are shown in Fig.

15

10

State

0 20 40 60 80 100

Index

Figure 1: Linear Gaussian Model

2. It shows thap(x) approximates(xg) well.

We compare backward smoothing with Kalman smoothing. In Figure 3, the thick black line represents the
estimated state; based on the backward equation smoothing. The dotted line represents the estimated state
based on the Kalman filter; the thin black line represents the real state. Figure 3 shows that our algorithm realizes

good state estimation as well as Kalman smoothing.

3.2 Linear Non-Gaussian State Space Model

In this subsection, we apply our algorithms to a simplest linear non-Gaussian state space modetiigitiibation.
A simple linear non-Gaussian state space model witlstribution is defined as

Ty = Ty—1 + vy, (20)

Yt = Tt + €,



True p(xo) p(x0)

04

03
]
Density
02 03
|

Density

0.1
01

-
i

Figure 2: Initial Distribution (Linear Gaussian Model)

wherev; ~ t(df)*° ande; ~ N(0,02,). We set{df,c,,} = {8,2}. The backward equation of Eq. (20) is given
by

Tt—1 — Tt — Vt. (21)

The estimated state; is shown in Fig. 4. It shows that state estimation based on our backward smoothing is
improved at time points close to the start of the series. The initial distribgfieg) and the true initial distribution

p(xo) are shown in Fig. 5. It shows thafx,) approximates(x,) well.

3.3 Stochastic Volatility Model

The stochastic volatility model, which is introduced by Taylor (1986), is adopted to model the autoregressive

behavior of the volatility and non-Normality in the returns in financial time series. The simplest stochastic volatility

model is defined as

Tt = QsTr—1 + Vg, 22)

x
Yt = € eXp(?t%

1%The acronymif represents degrees of freedom of thistribution.

10
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Figure 3: Compare Backward Smoothing with Kalman smoothing

wherev;, ~ N(0,02), ande; ~ N(0,02,). We set{as, o5, 0,,} = {0.8,1,1}. The backward equation of Eq. (22)
is given by

Ti—1 — ai(.f('t — ’Ut). (23)

The estimated state; is shown in Fig. 6. It shows that state estimation based on our backward smoothing is
improved at time points close to the start of the series. The initial distribgfiog) and the true initial distribution

p(xo) are shown in Fig. 7. It shows thatx,) approximates(x,) well.

3.4 Stochastic Volatility Model with ¢-distribution

A stochastic volatility model with &-distribution, which is introduced by Liesenfeld and Jung (2000), is defined
as

Ty = QX1 + Vg,

(24)

T
Yt = € exp(g),

11
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Figure 4: Linear Non-Gaussian Model

wherev; ~ N(0,02) ande; ~ t(df). We set{as, 0, df} = {0.8,1,4}. The backward equation of Eq. (24) is
given by

Ti_1 = Oéis(:ct — ). (25)
The estimated state; is shown in Fig. 8. It shows that state estimation based on our backward smoothing is
improved at time points close to the start of the series. The initial distribgfiog) and the true initial distribution

p(xo) are shown in Fig. 9. It shows thatx,) approximates(x,) well.

4 Conclusions

We proposed a smoothing algorithm based on the Monte Carlo Particle filter and a backward equation. Our method
is applicable to any nonlinear non-Gaussian state space model if a backward equation is obtained analytically. The
advantage of our backward smoothing is its simplicity. It is a minor modification of the “standard” MCP filter.
Moreover, our algorithm requires little memory to store the weights of particles. Nevertheless, an obstacle to its
implementation remains: in general, the backward transition equation of states cannot be obtained analytically.

Moreover, we propose a filter initialization algorithm based on the smoothing distribp(tiaty,.7-) and a back-

12
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Figure 5: Initial Distribution (Linear Non-Gaussian Model)

ward equation. Our filter initialization algorithm is very simple to implement and realizes good approximation
of a real initial distribution. We demonstrate the effectiveness of our method by applying it to a linear Gaussian

state space model, a linear non-Gaussian state space model, a stochastic volatility model, and a stochastic volatility

model with at-distribution.
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