
「現行システムの特長と課題」

栗田 太郎 ソニー株式会社

システムの構成パターン(青字: 特長・緑字: 課題)

ISO 25010 システムの品質モデル等に基づく整理(青字: 特長・緑字: 課題)

ISO 25010 品質特性	副特性の一部	説明
機能適合性	・機能正確性	各セキュリティ演算器の正確性と, 複数者による記録の突合により成り立つ
性能効率性	・時間効率性 ・資源効率性 ・容量満足性	・オフラインでも利用できるので即座に 処理できる ・資源や容量が少なくても動作する ・システムに複数あるセキュリティ演算 器の計算結果を信じるモデルであり(監 査はできる),計算コストが低い
互換性	・共存性 ・相互運用性	・プラットフォームの仕様と、端末の検 定等によって成り立つ ・システムとその要素を複数者が開発・ 検証することにより接続性が向上する
使用性	・習得性 ・運用操作性 ・アクセシビリティ	・「カード」はシンプルで使いやすい・スマートフォンをカードと同様に簡単に取り扱うことができる・アプリや端末, Web サービス等が連動すると分かりづらくなる
信頼性	・成熟性 ・可用性 ・障害許容性 (耐故障性) ・回復性	・アトミック性があり、処理は確実に行われることが保証される ・一方で、無線の場合、「処理未了」が生じる可能性がある(処理は行われている) ・様々な運用形態により信頼性を実現する、オフラインでも動作する
・保守性 ・移植性	・モジュール性 ・置換性	・オープンな,規格化された仕様である ・複数者で開発・運用・維持している

セキュリティ等 に関係する規格	セキュリティ等の 副特性・要件等	説明
ISO 25010	機密性 (Confidentiality)	・偏在する演算器のセキュリティにより守る・上位システムのセキュリティにより守る
	・インテグリティ (Integrity) ・責任追跡性 (Accountability)	・改ざんに対しては暗号技術で守る ・記録(ログ)を集めることにより全 てを把握する ・記録を確認・監査する
	・否認防止性 (Non-repudiation) ・正真性 (Authenticity)	・所有認証・知識認証・生体認証等により守る ・利用者について、所有認証の場合、 本人認証が難しい ・スマートフォンの場合、利用機種の セキュリティに依存する
ISO 15408	セキュリティ 機能要件	システムの一部の静的な仕様と実装・テストに対して,第三者評価・認証の規格・制度に基づき,目標や仕様・検証項目等を定め,これが専門家により評価・認証される
	セキュリティ 保証要件	システムの開発と運用,環境についても規格に従い文書化,評価される
その他	暗号アルゴリズム	システム全体に脆弱性がないことの証明は難しい
	プライバシ	利用者が, 運用者が法律や約款を守ることを信じるモデルである

現行システムの特長と課題

【特長】

- 利用者と攻撃者が物理的にアクセスできるものはセ キュアな演算器により守られる
- 様々な構成や利用の形態がある
- 処理速度が速い(急がない処理は後から行う. 取り 消しもできる)
- 分かりやすく使いやすいユーザインタフェースである
- オフラインでも利用できる(たとえば故障や災害に強い)
- スマートフォンのアプリの起動が不要である
- ハードウェアとエコシステムによるセキュリティと 安心感がある
- 環境負荷が低い
- セキュリティの第三者評価・認証や,機能・通信の 互換性の検定に関する枠組みがある

【課題】

- 利便性とのトレードオフで本人認証が難しい. スマートフォンのセキュリティに依存している
- スマートフォンのアプリケーションや Web サービス, (店舗等の)端末等と連動すると, 利用方法が統一されず, 使いづらいと感じる利用者もいる
- 利用者にとってサービス提供者のシステムはブラックボックスであり、利用者がサービス提供者を信頼するモデルである(利用者にとって契約の履行の確認のコストが高い)
- 利用者にとって取り決めが分かりづらい. 様々な形の契約をリアルタイムに合意形成することができない
- 利用者のプライバシの取り扱いはサービス提供者の 考え方やシステム運用による
- 暗号アルゴリズムや運用を含めて,システム全体を 品質保証し続けることは難しい